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Recent work on the Bondi-Metzner-Sachs group introduced a class of functions ,Y,,(0, ¢) defined
on the sphere and a related differential operator 8. In this paper the , Y, are related to the representation
matrices of the rotation group R, and the properties of 8 are derived from its relationship to an angular-
momentum raising operator. The relationship of the ,7,,(6, ¢) to the spherical harmonics of R, is also
indicated. Finally using the relationship of the Lorentz group to the conformal group of the sphere, the
behavior of the ,T;,, under this latter group is shown to realize a representation of the Lorentz group.

1. INTRODUCTION

RECENT paper by Newman and Penrose on the
Bondi-Metzner-Sachs group! features a new
differential operator,? symbolized by & (‘“edth,” the
phonetic symbol for the hard “th”), and a related
class of functions ,Y,,,(0, ¢), all defined on a sphere,
in a central formal role. It is the purpose of the present
paper to study 0 and these generalized spherical
functions and to relate them to more familiar struc-
tures.
In Sec. 2, we review previous work and give some
further geometrical interpretation of thop as well as
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 The operator symbolized by O has been referred to colloquially
as “‘thop.”

an illustration of the suitability of 8 and the ,Y;,,(0, ¢),
s=1, 0, —1, in the manipulation of Maxwell’s
equations. In Sec. 3, we introduce and develop the
formalism which allows one to view 0 as a thinly
disguised angular-momentum lowering operator and
to relate the ,Y,,.(0, ¢) to the elements of the repre-
sentation matrices of the rotation group R;. This
work was on the one hand motivated by inspection
of the results reviewed in Sec. 2 and on the other hand
allows a simple rederivation and ready extensions of
such results. As an adjunct to this section, the relation-
ship of Y;,,(0, ¢) to the spherical harmonics of R,,
i.e., those functions which carry the representations of
R, defined- on the unit sphere in four dimensions, is
briefly indicated. In Sec. 4, we discuss the well-
known relationship of the Lorentz group to the
conformal group of the sphere and determine the
behavior of the ,Y,, under the conformal group,
thereby realizing a representation of the Lorentz
group of somewhat unusual appearance.
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2. SUMMARY OF PREVIOUS WORK

In this section we discuss some of the previous
work! on the differential operator d and the spin-s
spherical harmonics Y, .

In three-dimensional Euclidean space with polar
coordinates r, 0, ¢, we introduce an orthonormal
triad a, b, and ¢ of vector fields. The vectors a and b
are tangent to the sphere of radius r at each of its
points while c is in the direction of the radius vector r.
Of course a and b are only defined up to a rotation of
angle v about c. It is very convenient to introduce in
place of a and b the complex vector m and its complex
conjugate M by means of

V2m = a + ib; @1

then m is defined up to a phase factor, i.e., m" = e*m.
A quantity # is now said to be of (integral) spin-
weight s if, under (2.1), it transforms according to

7 = ey, 2.2

Examples of quantities of spin weights s =1, 0, —1,
respectively, are
A-m,A-c,A-m,

where A is any vector. More generally, examples of
quantities of spin-weight s are furnished by three-
dimensional tensors of rank » contracted &, k,, and
ks times with m, ¢, and i, respectively, where
ky — kg =3, ky + ky + kg = n. We adopt the con-
vention that the real and imaginary parts of m point
along the coordinate lines and hence transform
according to (2.2) under coordinate transformations.

The differential operator 0, acting on a quantity 7
of spin-weight s, is defined by

= —(sin 0)3\: + icsch }-S](Sm O~ (2.3)

Since one has

(B7) = e'“+e(dy), 2.4

it is seen that d has the important property of raising
the spin weight by 1. Similarly if one defines 3 by

By = —(sin ) [—% —icsct —d(sm o)y (2.32)

with 7 here also a quantity of spin-weight s, one can
see that 3 lowers the spin weight by 1. Also one has

(35 — 83)n = 2s1.
Of importance too is the effect of d& on ordinary
spherical harmonics:

Ylm(6:¢), -—l_<_m$l, l=0,1323"'

Indeed we can define spin-s spherical harmonics
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+ Y, for integral s, /, and m by
Y10, @) = [ — )Y + 917,00, ¢),

0<s<L,
= [( + ) — (=), (0, ¢),
—1<s<0. (2.5

The ,Y,,, (which are not defined for |s| > ) form a
complete orthonormal set for each value of s; ie.,
any spin-weight s function can be expanded in a series

in ,Y;,,. The spin-s spherical harmonics have the
further properties:

® Yim = ()" Y, (2.6)
(i) 8 Y, = [ — U + s + D1 Yo, (2.72)
(i)  3,Y, = —[U+90—s+ D}, Y,,, (2.7b)

(IV) 665 Ylm = —(1 - S)(l + s+ l)sYlm'

Thus 8 and 3 act as raising and lowering operators on
the “quantum number” s, and the ,Y,, are eigen-

2.8)

functions of 3.
For many computations, a more convenient coordi-
nate system for the sphere is the set of complex stereo-
graphic coordinates ({, {) which are introduced by
{ = &' cot 10. 2.9)
9 and 3 become
Oy = 2P=*[0(P*y)/0{],

dn = 2P™[9(P—*n)/L],

(2.10)

with P = }(1 + (D). In the (¢, {) system, the spin-s
spherical harmonics take the form

Aim —
T A

% z ( — s) ( l+s
» 4 p+s—m
with
G = (=) [+ m)! (| — m)! (2 + 1)[dn]d.
(2.12)
Expression (2.11) applies also to “spinor harmonics”
for which /, m, and s are all half-odd integers.
O can be related to covariant differentiation in the

following manner: using coordinates on the sphere
such that the metric takes the form?

dst = P~*d( di,
we introduce two complex vectors m* = V2Psz,

i =208, o = {, {. From a spin-weight s quantity
7, we can define a totally symmetric and trace-free

8)/17"

)‘cp(—z)”“-m, @.11)

3 The function P and the coordinates { need not be the ones used
in Eq. (2.10); as a matter of fact the surface need not even be a
sphere.
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tensor of rank s,
Moy = n’ﬁa cen ’7'13 + ;}ma cmy,
with the inverse relations
7 = n(a...ﬂ)m“ e mﬂ; ,7 — n(a...p)n_”a - 'n"lﬁ.

It is now easy to prove

on = \/En(a“_m;ym“ comPme, (2.13)

As a simple example illustrating the use of 8 and
the ,Y;,,, we consider the Maxwell equations

V:(E+iB)=0,

V A(E + iB) — i(¢/0t)(E + iB) = 0. @219
The quantities?
G, =(E+iB)-m,
G, = (E+iB)-c, (2.15)

G_=((E+iB)-m

of spin weight 1, 0, and —1, respectively, can be
shown from (2.14) to satisfy the equations

('a% L éa;) 2 (a% - 5@;) rG, — 83,G, = 0, (2.16a)
2 2

(55 = 5)"00 3000 =0, (2160
"

(_éa_t _ ;)rz(g n aﬁ)rG_ —33,G_=0, (2.16c)
r r

in which the quantities G,, G,, G_ are already un-
coupled. If we assume solutions of these equations of
the form

rG, = F(r,1),Y;,,(69),

72G0 = Fo(r’ t)o Ylm(eqs)’

rG_ = F_(l‘, t)—l Ylm(e‘ﬁ)’
it is seen from Eqs. (2.7) and (2.8) that

J 0\ o(0 d
el — — —|F - DI+ 2)F, =0,
(at+ar)r(at ar) ER X+ 2F,

2.17)

» o {
(ﬁ—ﬁ)Fo+}l(l+1)Fo=0,
3 8\ .0 @
- — = — 4+ —\|F_ I— DU+ 2)F_=0,
(at ar)r(at+8r) +U=Di+2)
(2.18)

the dependence on angular variables having canceled
out. These latter equations can be solved by a variety
of standard techniques, though it is not our purpose
to go into this question here.

4G, , G,, G_ have been referred to elsewhere as ¢, ¢, ¢, . See,
e.g., E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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The main point to be made is that Maxwell’s
equations or more generally vector equations can be
simply solved in terms of the ,Y,,, instead of the
cumbersome apparatus of the vector spherical
harmonics.?

3. RELATIONSHIP TO R; AND R,

In this section, we identify the functions ,Y;,, with
the elements of the matrices of the representation
D! of the ordinary rotation group R, and relate 0
to an ordinary angular-momentum raising operator.
We thereby obtain the principal properties of the
+Y1 and 0 as transcriptions of results familiar in the
theory of angular momentum.

We proceed first to the above mentioned identi-
fication of the ,Y;,,. For our purpose it is convenient
to have an explicit definition of ,¥,,,(0, ¢) rather than
the expression in terms of stereographic coordinates
given in Eq. (2.11). By direct substitution of (2.9) we
obtain®

}
Y8, #) = [(l +m) (= mr@l + 1)} (sin 6/2)%

4+ ' —s)! 4m
[ — N l + s __\l-r—s,imé 2r+s—m
x;( . )(r+s—m)( Y™ (cot 6/2) .

3G
Now we give’ careful definitions of and appropriate
explicit formulas for the elements of the matrix D,
of the representation of R; associated with total
angular momentum /. If a spatial rotation R of angle
w about a unit vector n is given by

¥ > x'% = Rkixl
R* = §* cos w + rn*n!(l — cos w) — €™ sin w,
(3.2)

then the matrix D' may be defined by its action on
spherical harmonics

V(&) = (k| Im) > Y, (R),
% = (sin 0 cos ¢, sin 0 sin @, cos 0),
Ylm(i() = 2 Ylm’(x)Dinm(RWI)

(3.3)

5 1t has recently been pointed out to us that the functions ,Y,,,
have already been introduced, though by very different techniques.
For this alternate method, and its detailed application to Maxwell
theory, see I. M. Gel’fand, R. A. Minlos, and Z. Ya Shapiro, Repre-
sentations of the Rotation and Lorentz Groups and their Applications
(The Macmillan Company, New York, 1963).

¢ In this passage from Eq. (2.11) defining ,Y;,.(¢, ) to Eq. (3.1)
one should not only insert the definition (2.9) but also introduce an
additional phase factor e*¢ to account for the rotation of the vectors
associated with the change of coordinates (, {) to (6, ¢).

? The necessity for the detail of the discussion here stems from
the fact that we could not simply refer to one of the few completely
consistent treatments of the theory of the rotation group available
in the literature, without extensive modification of the notation
employed in Ref. 4 and related papers.
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If we define a rotation R(x, 5, ) of Euler angles
o, B, ¥ as being composed of® y about OZ followed
by g about OY and then « about OZ we have

&L (B,
Following Wigner,? in principle if not in detail, we
employ the relationship of Ry to SU, in order to give
an explicit formula for D! . («fy). If the element A
of SU, acts on a two-component spinor w = (%),
where

3.4

u = e*cos 1, v = e~42sin 16, (3.5

so that u/v = {, according to w— w' = 4w, then
the correspondence of 4 € SU, to Re Ry can be
given in the form?!?

R = L Tr (c*Ac'A"), 36
A= £(1 + ¢*¢'R*/[4(1 + Tr R}, 3.6)

which allows us to obtain the image A(xfy) of
R(xpy) in the form
A(aﬂy)=( ; ’?), o = e H cos 4
—b a

b = e¥ieDgin 18, (3.7)

Now defining
¢7‘m(u9 v) =

uJ’+mUJ‘—m
[(j + m)!(j — m)t
as usual we can, in agreement with Eq. (3.5), write
¢J’m(us U) g (ﬁjm(l‘l” U’),
¢jm(ul’ Ul) = Z qum'(u’ U)DZn’m(A(aﬂy)-l)’

and with a little algebra obtain

D}, n(aBy)

= Dl A(efy)™)

_ (G +mG = m) %E jAmy [ i—m

B [(j+m’)!(j—m')!} - ( r )(r —m— m)
X drl',j+m—r(_b)H—m'—rar—m—m'

CTGAmG=m
o= e G 9

() e

X eima(cot‘ _zl_ﬂ)Zr—m—m'eim'y.

(3.8)

%

(3.9)

8 This procedure is clearly equivalent to the more usual one of a
rotation « around OZ, followed by f§ around OY’ and finally y
around OZ”,

® E. P. Wigner, Group Theory (Academic Press Inc., New York,
1959).

10 |t follows now that under w — w’ = Aw, W = wow (= Q) has
the transformation law W#*= W’* = R*'W' as consistency of
course requires.
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We may now insert a = ¢, f =0, j=1, m' = —s
into Eq. (3.9) and, by comparison with Eq. (3.3) obtain

Yin(09)e™™" = [(21 + 1)/4n]DL,,($0y), (3.10)
so that for y = 0 we can make the promised identi-
fication

Yin(09) = [(21 + 1)}dm] DL, ($60).
Note that for s = 0, we have

oYin(08) = [2L + D)fAm]! Dy($00) = Y, (04),
so that the spin-s spherical harmonics with spin
weight s =0 are exactly the ordinary spherical
harmonics. It may also be noted that our procedure
extends the definition of spin-s spherical harmonics
to the case of s half-integral.

Now the functions D! ., («fy) provide!! a complete
orthonormal basis for functions defined on R,, so
that orthogonality and completeness relations for
Vi (0, ) follow easily. The orthogonality relations

2n 1 27
( docf d cos ﬁf dy D', (apy) DX . (2fy)
Jo ¢ 0

= [8772/(21 + 1)]all'6mm'6ss’ (312)
translate, by use of Eq. (3.10) and relabeling, into

27 1
f d()‘bf d cos Bs Ylm(etﬁ)snm'(O(#) = 6ll’6mm' . (313)
0 -1

It is noteworthy that we obtain in this way only an
orthogonality relation involving spin-s spherical
harmonics of the same spin weight. Orthogonality of
the D', with respect to s in Eq. (3.12) is of course
associated with the variable y which is absent in Eq.
(3.13). Also from the completeness relation

2 Drlnm(aﬂy) Dfn'm(a,ﬂ/)’,)

Imm’

= 87%/(21 + 1)d(a — 2")8(cos B — cos B)o(y — ¥'),
(3.14)

(3.11)

we can prove, by evaluating

27 .
f dye—ls)‘(. . )
0

(where s is any integer) on both sides, that we have a
completeness relation

2 Yin(08),Y1u(0'4) = 0(¢ — ¢')8(cos 6 — cos 6),
" (3.15)
for each integral value of s. Thus for each integral s
the function ,Y;,,(6¢) form according to Eqs. (3.13)
and (3.15) a complete orthonormal set of functions on
the unit sphere with respect to which any function
of spin-weight s defined on the unit sphere can be
expanded.

11 R, Penrose, Proc. Cambridge Phil. Soc. 55, 137 (1959).
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We turn now to the use of Eqs. (3.10) and (3.11) to
motivate the association of d with an angular-momen-
tum raising operator. We set out from the observation,
familiar from the theory of the symmetric top, that
if one defines operators L,, L.,

L, ——l—(?-
oo’

= :i;e*‘“(aﬂ + zcotﬂ ;i: icsc ) (3.16)

which obey the commutation relatlons
[Lz’ L:t:] =4L., [L+’ L]= 2Lz
of angular momentum, then for each allowed value
of 5, D!, (afy) behaves like an eigenvector |/m), i.e.,
L2D’_m = I(l + 1)DY,,,,
L,D',, =mD,,,
LD, =[(lFmd+tm+1)] D, (BI17)

We do not relate L, to 3, of course, but instead
define a second angular-momentum operator K,
which commutes with L, and with respect to which
D! behaves like an eigenvector |Is) for each allowed
value of m. The way to define K follows easily from

the symmetry of D’ («, 8, y) with respect to m, « on

the one hand and s — y, on the other. Thus, we define
K, =i i
oy’

K, = ﬂ:e*”(a% + icotﬂa% + icscﬂ%) (3.18)

and deduce
K., K.]=£K., [K.,K]=2K,
[L, K] =0,

and

K*D!,, =11+ 1) D",

K, D', =sDl,,,

KDy = [ F 90 £ 5 4+ DED iy (3.19)
We are now in a position to make explicit the relation-

ship of K, to 8. When acting on D! the operator
K, can be written in the form

K+=e—iv(-aal—3— iscot f + icscﬂ-—%)

= ¢(sin /3)"‘( 25 Hices )(sm B, (3.20)

so that
[K+Dl—sm]a—¢ p=0,y=0 = 6D—3m l¢00) (321)
follows in accordance with Eq. (3.1). Thus X, is the
differential operator to which the operator 8 is more

closely related. The reason that 3 is not defined as a
differential operator by Newman and Penrose stems
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from the fact that they work only with ,Y,,.(6¢) ~
D!, (460) rather than D' _ (46y), ie., from the
nonappearance of the variable y. Of course this in
turn results from the fact that such a variable is not
needed by them on physical grounds. However, the
properties of 0 follow very easily from its relation to
K. . For example, from (19), (21), and (10) we get
directly

8,Yn(04) = [ = ) + s + DF'aYin(09), (3.22)
which is Eq. (3.22) of the paper by Newman and Pen-
rose. Of course, it was results like this one which
initially suggested the relationship of s to a magnetic
quantum number and motivated the identifications of
0 with an angular-momentum operator.

Finally, it may be worthwhile here to point out
the relationship of 8 to representations of R, defined
on the unit 4-sphere xI + x2+ x2 4 x3=1. It is
well known that the generators of infinitesimal rota-
tions of R, can be defined according to

M, = —i(x,0, — x,0,), 1<k, 1<4,
and replaced by a pair of commuting angular momen-
tum operators £, 3}.:
£,= My + My, L3= M5+ My,
£3= M + My,

Hoy = Myg — My, Koo= My — My,
J{’S M12 - M34
Now, in view of the consequence £2 = X?* of these

definitions, only the subset (/, k) of representations of
R, with =k =0, 4, 1,--- can be defined on the
unit 4-sphere with these “standard” definitions of the
six infinitesimal generators. However, only these
representations arise in the previous discussion. We
can explicitly make contact with the formalism of the
previous paragraph by introducing polar coordinates
according to

x, = sin 36 cos }(x — 7),

x, = cos }f sin ¥(o + ),

x3 = sin 4g sin §(a — %),

x, = cos 8 cos 3(a + 7), (3.23)
for then £ =L, X =K follow. Alternatively we
could remark that the DJ. (4™ form a complete

orthonormal basis for functions defined ‘on SU(2).
Explicitly this latter term refers to functions of a, b

such that
a b
A= _
—b a

belongs to SU(2), or simply such that |a|* + |b|> = 1.
Now from (7) and (23), we have

a=x2—iX4, b=x1—ix8,



2160

so that functions of a, b such that

la]* + 161" = x} + x3 + X} + xi =1
can be read as functions defined on the unit 4-sphere.
This remark is of course what underlies the identi-
fication of the D7 ., with the basis of the representa-
tion (j,j) or R,.

It is perhaps worth emphasizing that the ,Y,,,(04)
or the D! play two very different roles being on the
one hand closely related to matrix elements of the
representation matrices of Oy and on the other hand
closely related to bases functions of certain representa-
tions of O,.

4. THE LORENTZ TRANSFORMATION
AND SPIN-s SPHERICAL HARMONICS
A. Conformal Mappings

Up to this time the discussion of the spin-s spherical
harmonics has been based on their relationship to
the rotation group. The rigid rotations are a three-
parameter group of isometric mappings of the unit
sphere onto itself. Thus

ds? = db? + sin® 0 dgp* = dO'® + sin2 0’ dp'2  (4.1)
if the mapping {0, ¢} — {6, ¢’} is a rigid rotation.
In order to relate the spin-s spherical functions to the
Lorentz group it is necessary to enlarge this group of

homeomorphic mappings of the 2-sphere. The
mapping {0, ¢} — {0', ¢’} is conformal if
ds? = d* + sin?® 6 d¢?

= KX(0', $")(d0’2 + sin? 0" dd'?). (4.2)

Clearly the rigid rotations form that subgroup of the
conformal transformations for which the conformal
factor K? = 1. The conformal group, which preserves
the angle between two curves and its direction, can
be shown to be a six-parameter Lie group which is
isomorphic to the proper homogeneous Lorentz
group.’t12 The result can be easily derived and as
it introduces the notation we wish to use in our
discussion of spin-s spherical functions, we give the
proof here.

In terms of the stereographic coordinates { =
e’ cot 0/2 which were introduced in Sec. 2, the
metric on the unit sphere has the form

ds? = 4(1 + {02 di dl. 4.3)

The complex coordinate { defines a point in the
complex plane. Therefore, the conformal trans-
formations of the complex plane will induce the
conformal transformations of the unit sphere onto
itself. The only transformations with a simple pole
and a simple zero at the new north and south poles,

12 R, K. Sachs, Phys. Rev. 128, 385 (1962).
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respectively, are given by the Mobius transformation

=@+ L+ 9); ad—fy=1 (44
Applying this transformation to Eq. (4.3) we find
ds® = K* = K*[4(1 + {'D)*dl’ dl’,  (4.5)

(L + @+ ) + (L + OFL+ 8)

1+ '
The complex constants «, §, 7, and d together with
the restriction indicated in Eq. (4.4) represent six
real parameters.

To show the isomorphism of Eq. (4.3) with the
proper homogeneous Lorentz group, we introduce
a two-dimensional complex linear vector space. Let
u, and u, be the components of a vector in this space.
To each transformation (4) there corresponds a
transformation of SL(2) as follows:

uy = oy + Puy, Uy =yu, + ou,, (4.7)
as can be seen by the identification { = u,/u,. SL(2)
furnishes a double covering of the conformal trans-
formation exactly as it furnishes a double covering of
the proper homogeneous Lorentz group. Thus the
required isomorphism is established.

K = (4.6)

B. The Irreducible Representations D102
If £ and # are two independent basis vectors in the
two-dimensional spinor space [the space of vectors
(uy, u) which satisfy the transformation law (4.7)],
then a basis for the linear vector space defining the
irreducible representation of the Lorentz group
denoted by!2 DUir 2! is given by
(&2 (E2iammama),
0<m <2y, 0 my <2, (4.8)
The parentheses indicate complete symmetrization of
the factors. This linear vector space is (2j; + 1)
(2j, + 1) dimensionai. Therefore, an arbitrary vector
in this space is determined by (2j; + 1)(2j, + 1) X
numbers a,, . The transformation (4) which maps
(uy, u,) into (u u,) induces a corresponding mapping
of the components 4,, . into components am1 s
By considering the transformation of the quantities

()PP (ug) ™ (i) ™ (i)™
= (0(”1 + ﬁuz)zjl_ml(?’ul + 6u2)'"1
(i, + i)™ ™ (Puy + Sity)™

2y 2dg

=Y 3 AU yhemymgienge(4.9)
7n1=0 ng=0
we establish the transformation
271 27
mxma _mz-o néoA%iz'(t;zZunz ning * (410)

1% See, for example, P. Roman, Theory of Elementary Particle

(North-Holland Publishing Company, Amsterdam, 1960).
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C. The Transformation of the Spin-s Spherical Harmonics
Consider the set of functions

Ly = (14 Ly EgEmempErems,
] <L, 0<m<LL—s, 0<m<L+s.
(4.11)

Applying the transformation (4.4), we get for the
transformed set

Zmimy = [EHKH1 + DM (L + Bl + )™
_ x @ + PG+ O™ (4.12)
with
1 L+ OF+0)
1+ KA+
S
{4+ 6’

and K given by Eq. (4.6). Comparing (4.12) with Eq.
(4.9) and (4.10), we find that
ZL = KL zs).Lis S A[i(L—s)][%(L+s)]ZL

myme;ning ning *
ny=0 ny=0

Therefore, up to the conformal factor K—%e®s?, the
functions ZZ  transform under the DU(L—9L+s
irreducible representation of the Lorentz group.
Clearly these functions do not form an orthonormal
set of functions on the sphere for fixed s. Indeed, for
all L > |s| they form a redundant set of functions for

definite spin-weight s. However, the spin-s spherical
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harmonics ,Y,,, do form an orthonormal set for fixed
s. It is easy to show that for / < L the ,Y;,, are given
uniquely by the ZZ,

L—s L+s

n=2 2 BLmmzL (4.13)
mp=0 mo= 0
s<IL<L, m<lI
L mym im -+$—m I—s
sPim = )p ( )
: [ — s)'(l+s)']% E( P

N ( I+ ) L—1 )
p+s—m (L—s—ml—p
(4.14)
s, |+ m} (4.14a)
and the a,,, are the constants defined in Eq. (2.11).
For fixed s and L the coefficients BZ ™™: form
a nonsingular
L=s+DL+s+DxL-s+DL+s+1)

matrix [(/, m), (m;, m,)] connecting the Zm to the

+Yim - Since the ZL  transform under the

X 6m2,m1+s+m’
Pm=min{l —s—m,l—

mo

DIHL-UFLA+$)]

representation of the Lorentz group up to the factor
K-Let it follows that the ,Y,,.(]s] <I< L and
[m| < I) transform under an equivalent representation
up to the same factor.

The above results hold both for L and s integral, or
half-integral.
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1. INTRODUCTION

NEW set of conserved quantities for free massless
fields has been discovered by Newman and
Penrose.* For linear field theories, an infinite hierarchy
of such conserved quantities can be defined. However,

* This research was supported in part by the Aerospace Research
Laboratories.
1 E.T.Newman and R. Penrose, Phys. Rev. Letters 15, 231 (1965).

the nonlinear field equations of general relativity
permit only the first set of these constants to exist
and then only in asymptotically flat space-times. It
is well known? that constants of the motion generate
an invariant transformation, and conversely, that the

2 For example, see P. G. Bergmann, Encyclopedia of Physics, Vol.
54 (Springer-Verlag, Berlin, S. Flugge, Ed., 1962); A Trautman,
“Conservation Laws,” article in Gravitation, L. Witten, Ed. (John
Wiley & Sons, Inc., New York, 1962).
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C. The Transformation of the Spin-s Spherical Harmonics
Consider the set of functions

Ly = (14 Ly EgEmempErems,
] <L, 0<m<LL—s, 0<m<L+s.
(4.11)

Applying the transformation (4.4), we get for the
transformed set

Zmimy = [EHKH1 + DM (L + Bl + )™
_ x @ + PG+ O™ (4.12)
with
1 L+ OF+0)
1+ KA+
S
{4+ 6’

and K given by Eq. (4.6). Comparing (4.12) with Eq.
(4.9) and (4.10), we find that
ZL = KL zs).Lis S A[i(L—s)][%(L+s)]ZL

myme;ning ning *
ny=0 ny=0

Therefore, up to the conformal factor K—%e®s?, the
functions ZZ  transform under the DU(L—9L+s
irreducible representation of the Lorentz group.
Clearly these functions do not form an orthonormal
set of functions on the sphere for fixed s. Indeed, for
all L > |s| they form a redundant set of functions for

definite spin-weight s. However, the spin-s spherical
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harmonics ,Y,,, do form an orthonormal set for fixed
s. It is easy to show that for / < L the ,Y;,, are given
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L—s L+s

n=2 2 BLmmzL (4.13)
mp=0 mo= 0
s<IL<L, m<lI
L mym im -+$—m I—s
sPim = )p ( )
: [ — s)'(l+s)']% E( P

N ( I+ ) L—1 )
p+s—m (L—s—ml—p
(4.14)
s, |+ m} (4.14a)
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generator of an invariant transformation is conserved.
Therefore, it is natural to ask for the invariant trans-
formation generated by these Newman-Penrose (N-P)
constants of the motion.

In this paper, a preliminary attempt is made to
answer the above question. The N-P constants are
defined by integration over a two-dimensional closed
surface. Thus, the integral can be defined by a skew
tensor (or more generally, a complex) which is a
superpotential associated with the transformation.
Such a superpotential results from a transformation
law which contains arbitrary functions.? In Sec.
2 we sketch the relationship between an invariant
transformation, the associated conservation law, and
the resulting superpotential. The electromagnetic field
is the best known example of a linear field theory
which exhibits the essential properties to be found in
all linear massless free fields. Therefore, Sec. 3 con-
tains the explicit derivation of the N-P constants for
the Maxwell field and a discussion of their transforma-
tion properties. The superpotentials are constructed
in Sec. 4 and a discussion of the suggested invariant
transformation is given.

2. INVARIANT TRANSFORMATIONS AND
SUPERPOTENTIALS

Whenever a set of field equations can be derived
from an action principal,?

6J‘£(.VA ’ y.»l,u) d4x = 0,

the conservation laws associated with an invariant
transformation can be derived by Noether’s theorems.
In the following, we essentially give the discussion ot
Trautman.?

Let the invariant transformation be given by

Oy = ul &, + w &l @.n

The n quantities &7(x) are the descriptors of the
transformation and in general may be a set of arbitrary
functions or may simply depend on a finite number
of parameters.

For Eq. (1) to define an invariant transformation,
the Lagrangian must satisfy

5 =0Qf = —Liy, + (i SyA) . 22)
ayA,p P

3 The y4(x) represent the N-independent field variables (e.g.,
Ay, 8uv, Ya, etc.); x# are the four coordinates (e = 0, 1, 2, 3); the
signature of the metric is taken to be —2. Where it is convenient,
partial derivatives with respect to explicit coordinates » and « will
be written as d, and 9, , respectively.
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Define
sl O 3
Qe — by, o
yA,p
Then from (2.2) we have
19, = —by I (2.4)

and whenever the field equations are satisfied,
L4 = 0, t* satisfies a local conservation law

(2.5)

By integrating (2.5) over a suitable four-dimensional
domain which extends to spatial infinity, we can define

C=f # do,

as a constant of the motion if the flux at infinity
vanishes. Note that in (2.6), ¢ is a three-dimensional
open spacelike domain.

If the descriptors depend on a finite member of the
parameters, there will be one such conserved quality
defined for each parameter. However, the situation
is markedly different if the &’ are arbitrary functions.
By the substitution of Eq. (2.1) into the right-hand
side of (2.4), we obtain

(° + uf 8, = [, ), — w, €. (27)

Integrating (2.7) over an arbitrary four-dimensional
domain on whose boundary the descriptors &7 vanish,
we find that the following identity must be satisfied:

t, = 0.

(2.6)

(oY, — w, It = 0.
From this identity it follows that for all &’
(t* + v, 18, = 0.

Hence, there exists a skew quantity W~ such that

t + uf A8 = . (2.8)

G

The superpotential W% is antisymmetric in (p, o), as
indicated by the inverted carat, and clearly satisfies

s __
UY =0, (2.9)

a strong conservation law which implies the related
weak law (2.5). From (2.8) and a further application
of Stokes’ theorem when L4 = 0, the conserved
quantity in Eq. (2.6) can be written as a two-dimen-
sional surface integral,

c= f * do, = %fﬁ W do,,.  (2.10)
a do
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Thus, there is a clear cut procedure for determining
a constant of the motion if one knows the invariant
transformation. Conversely, if a constant of the
motion is given, one can try to reverse the steps in
order to determine the invariant transformation which
is generated by that constant. If the constant of the
motion is given as a three-dimensional integral, as in
(2.6), one would want to construct a vector density
(at least with respect to affine transformations) with a
vanishing divergence modulo the field equations. The
invariant transformation is then to be identified by
(2.4). On the other hand, if the given constant of the
motion is a two-dimensional surface integral, one must
first construct a superpotential as in (2.10). Then
relations of the form (2.8) and (2.4) must be sought
before the invariant transformation can be identified.

Given a skew complex W%, the strong conserva-
tion law (2.9) is certainly satisfied. Generally, but not

always, W" already contains first derivatives of field

variables. Thus, ‘Uf: contains second derivatives.
One can use the field equation L4 = 0 in an attempt
to eliminate the second time derivatives. Such a

procedure leads to a new set of quantities:

2 e — AfE (2.11)
which, of course, satisfies a weak conservation law

t:op =0;

that is to say, a conservation law that is satisfied only
when L4 =0. In general, however, #/, does not
immediately have the form (2.4), whose right-hand
side is homogeneous linear in the field equations them-

selves. That is, the right-hand side generally contains
derivatives of the field equations as follows:

= a A+ ﬁf,L‘j,.
Defining
%0 = P — BAIA, (2.12)
one finds
t:’;,p = (ay — ﬁfi,p)LA
which is of the form (2.4). The invariant transforma-
tion is then identified as

6ya = —(oeg — Bl,p)- (2.13)

For an arbitrarily chosen complex U, one expects
to find dy, = 0, for «, differs from f7, , only when
a nontrivial invariant transformation exists.*

We propose to carry out the above construction in
order to determine the invariant transformation, if
any, generated by the N-P constants. It is carried out

4T want to thank Professor P. Bergmann for an extensive discus-
sion concerning this section.
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in Sec. 4 after the N-P constants have been identified
in the next section.

3. MAXWELL’S EQUATIONS

To simplify our discussion, it is convenient to
introduce a null tetrad as in the work of Newman
and Penrose.! Let the metric have the form

ds? = du(du + 2 dry — r* d0® — r?sin? 0 de? (3.1)
and define a null tetrad (see Fig. 1)
V2, =08, Y2n, =08+ 26,
J2m, = —r(8} + isin 663). (3.2)
With this choice we have
I =—mm =1 (3.3)

while all other contractions vanish.
The following self-dual (up to a factor —i) bivectors
are also useful:

V¥ = Fm’ — ["'m*,
M®» = Fpy — I'n* — m*m’ 4 mm*,
(3.4)

Using these bivectors, the self-dual electric field
tensor

U = n*m® — n’m*.

FOW = F* 4 i}eP°F,,

can be expressed in terms of three complex scalars,

FOw = g V0 — ¢ M* — ¢ U™, (3.5)
b = — 3V, F ¥,
¢ = zli‘Mqu(_)"v,
by = JU, F . (3.6)

Maxwell’s equations

FQw =0

Fig. 1. The null surface ¥ = uy showing an embedded two surface
r = r, together with the tetrad vectors /#, n#, and m#. The dotted
lines indicate the retrograde cone containing the same two surface.
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can then be expressed in terms of these qualities as

L0,0%) — 134, =0,  (37a)
r r
1 14
=0,(r¢s) — =94, =0, (3.7b)
r r
1 1
- (2au - ar)(r¢0) -~ ad)l = 0: (3-70)
r r

L0, - 3)0") — 10g,=0.  (37d)
r r

The angular differential operator® 8 acts on functions
of definite spin-weight s to produce a function of
spin weight s 4 1 while d acts on functions of spin
weight s to produce a function of spin weight s — 1.
Spin weight is determined by the complex vector m
which is defined only up to a phase factor e'v. A
function £ is said to have spin weight s if m — ¢"m =
& — "¢, Clearly ¢, ¢,, and ¢, have spin weight
+1, 0, —1, respectively.

The class of solutions to (3.7), which is of interest
to us, has the asymptotic form

N n u, 6, .
¢0 =n§0¢0(r?’+n (p) + O(r 4 ‘\)’

$_ 5 O -y
=——2  — .10 w)
% r 'rgO (n + Dr* ™ )
0 3p0 N b
¢2=é'2'+;¢21—2 i 3+n
r r =0 {n + )(n + 2)r
Equation (3.7d) imposes a relationship between &9
and ¢9:

(3.8)

+ o).

20,47 = 849, (3.9)

This equation is a consequence of charge conservation.

To obtain the N-P constants, eliminate ¢, from

(3.7a) and (3.7c), apply r20 to the former and 9,13 to
the latter, and add

£0 £ (20, — 8,)r20,(rdy) — 3drdy = 0. (3.10)

This equation is of spin weight +1 whereas invariant
integrals should have spin weight 0. Multiplying the
above by _,Y,,,(f, ¢) and rearranging terms, we get

(2au - ar)arr3¢0 —IYlm + garrad’o ——1Ylm
r

— Q=+ ey 1Y, — 3, Yzm(5r¢0)]
+ S[ro(d 1Y, )] = 0.

5 E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966);
J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and
E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967). In the Appendix
we give a brief summary of the needed properties of functions with
spin weight.
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FiG. 2. The curves §; and S, represent two different spacelike
sections of the null cone # = 1. The shaded area X is that portion
of the cone which is bounded by §, and §S,.

The last two terms are a divergence on the sphere,
while the third term vanishes for / = 1. From the
asymptotic behavior of ¢, given in Eq. (3.8), it is easy
to show that

0.Q1n =0,
Q1 = lim ©0,(rP¢y) _1Yy,,r% sin 6 dO de,
o m=0,4+1. (3.11)
In general one can show
0.0,,=0, —I<m<],
Q= lim | (8,55 (réy) _1Y,,,r" sin 0 d0 dp (3.12)

when the limit exists. These are the N-P constants.

4. SURFACE INTEGRALS AND STRONG
CONSERVATION LAWS

The N-P constants derived above are all expressed
as integrals over a rwo-dimensional spherical surface.
From the discussion in Sec. 2, one would expect these
constants to be related to a strong conservation law
with a superpotential.

We write the superpotential as a linear combination
of the bivectors defined-in Eq. (3.4),

U = OM* + AVH* + BV* 4+ CUW

+ DU + EM*™, (4.1)
giving the surface integral as®
U, = 3€wv do,,
do,, = }e,,,, do*’,
s = (=)} (42)

& In Sec. 2, W¥# and r# have tensor density character whereas here
for convenience, we take them to have zero density weight. The
difference is the factor (—g)* == r2sin B in the null coordinates of
Eq. (3.1). This accounts for the use of the tensor surface element
doyy in Eq. (4.2) and for covariant differentiation in the following
where ordinary derivatives occur in Sec. 2.
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F1G. 3. The curve S, represents the surface (v = uy, r = ry)
while the curve S, represents the intersection of the null surface
u = u; and the retrograde cone containing S;. The shaded area
is that part of the retrograde cone which is bounded by S, and S,.

where do?? is tensor extension of the two surface. The
six coefficients in (4.1) are to be chosen to satisfy the
following conditions”:
(i) In the limit of null infinity (¥ = const, r — o)
‘WU becomes an N-P const.
(ii) In the limit of null infinity, ‘W is invariant.
(a) lim does not depend on the choice of two

r—

surface as long as it remains embedded in
u = const (see Fig. 2).
(b) lim does not depend on the choice of null

surface u = const (see Fig. 3).

Conditions (ii) show that the N-P constants are in
fact constants of the motion.

Choose

@ = _ar(r3¢0) —1Y1m, E = 0~
For the two surface (u = u,, r = ry),
do,, = l,n,r?dQ,
and we find from (4.2) and (3.11) that
Iim W = Q,,.

Thus, the choice (4.3) satisfied condition (1).

() In order to satisfy (ii) it is sufficient to show

, 1
LU = 0(;)

(4.3)

(4.4)

(4.5a)
and

1
n, R = 0(:3), (4.5b)

for by Stokes’ theorem

3@ U da,, — fﬁ UF do,, = J UL da,,
Sa S z

7 We assume that the two surface of integration is embedded in
a coordinate surface u = const (Fig. 1). This restriction could be
dropped without altering the method of the proof or the conclusions
to be drawn although the detailed calculations are more difficult. In
essence the generalization is treated in Sec. V of the paper by New-
man and Penrose (to be published).
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where

do, = 1,r* dr dQ

I
on u = u, and

do, = n,r* dr dQ

"

on the retrograde null cone. The reason the orders are
different in (4.5a) and (4.5b) is that in both cases one
takes the limit r — oo for u = u,; when both S, and
S, are embedded in u = u,, their separation becomes
infinite in the limit, whereas their separation remains
constant along each ray if they are related as in Fig. 3
while passing to the limit.

Equation (4.5b) turns out to be the more sensitive
condition. With

A=r_, Y1m5¢0, B = r’¢g(d 1Y1,)
and
C=D=0,

we find [£° given by (3.10)]
S2n AU = €0 Y, + 2880 Vi, (47a)
r

(4.6)

J2Lam = rlz 9,%0,5 by 1Yin.  (4.Tb)
When £° = 0 and ¢, has the asymptotic form given in
(3.8), the conditions (4.5 a, b) are satisfied.

From the invariance guaranteed by Eq. (4.5a)
together with the transformation properties of® _,Y,,,
and the change in ¢, due to the change in the canonical
tetrad, one can show that the constants @, ,, transform
with respect to DV(® representation of the Lorentz
group; that is, like the components of a self-dual
skew tensor [up to a factor (—i)]

A similar discussion can, of course, be carried out
for the higher-order N-P constants. Superpotentials
can be found for these cases too; the conditions
corresponding to (4.7 a,b), however, depend on
derivatives of the field equations and the appropriate
_1Y,,.. These higher-order constants moreover, do not
transform in accordance with an irreducible represen-
tation of the Lorentz group by themselves, but
rather, add lower-order constants as well.

Now we are ready to ask for the invariant trans-
formation as defined by Eq. (2.4). From Eqgs. (4.1),
(4.3), (4.6), and (2.8), we find

U = —0,(rdy) 1Yy uM?* + 1 _,Y;,, O V™
— 2D Yy )V*, (4.8)
W =12 — 1P YL

2 —
m l"(; 0ir°o s Ym) B TD

8 See final section of the second reference given in Ref. 5.
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From (4.8) we have
(r*sin 61°) , = (r*sin 61” ,Y;,L°%) ,.

In order to fit the scheme of Eq. (2.4), it is necessary
that
(r* sin O1° _IYI,"E“),,, = —dpL0 (4.10)

Clearly, this is not the case. However, one can add
to t# any quantity which vanishes modulo the field
equations without altering the conserved quantity;
we may define

N A L) A

Im
Then (4.8) tells us that
(rFPsin 07, =0

which implies that
0y = 0.

That is, the invariant transformation, whatever it
may be, does not change ¢, at all.

Therefore, in accordance with the discussion at the
end of Sec. 3, the generator defined by an N-P con-
stant connected to an invariant transformation and
the existence of constants of the motion is fortuitous.
That is, the constants of the motion exist only because
of the particular choice of boundary conditions. The
result is curious, however, because the condition (4.5b)
requires £° = 0.

On the other hand, we are familiar with an invariant
transformation which also gives (4.11): gauge trans-
formations of the vector potential do not change
F* and hence ¢,. However, an attempt to understand
the N-P constants in the framework of the gauge
transformation has thus far been unsuccessful. Further-
more, one is not hopeful for such an explanation, for
there is no gauge group associated with the scalar
field, although the scalar field also exhibits N-P
constants. However, it may be an anomalous case.

@.11)

5. CONCLUSIONS

There is little reason to doubt that Eq. (4.11) cor-
rectly expresses the results of the sought for invariant
transformation. If we adjoin to £° the second-order
equations for ¢, and ¢,, an action principle can be
constructed as follows:

0=— f (6,(rda)(20, — B)(rbo) — Drpp)d(reby)

+ (2au - ar)(r2¢1)ar(r2¢l)
— (B0} sin 8 dU dp dr du.

Thus Noether’s theorem must hold if an invariant
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transformation exists. Replace 8¢, in Eq. (4.10) by
8¢, and add to (4.11) 6¢, = 8¢, = 0. In the previous
argument leading up to (4.11), we have merely turned
the crank in reverse. Given the constant of the motion,
find the invariant transformation.

However, the discussion at the end of the previous
section does not seem to offer much hope of under-
standing these constants. Further efforts in coming to
an understanding are worthwhile because Einstein’s
equations exhibit five such complex constants in
asymptotically flat spaces, and their existence seems
to inhibit the physical behavior of mass distributions.?
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APPENDIX

The properties of 0 and the spin-s spherical func-
tions are discussed at length in the two papers noted
in Ref. 5. Here we give only those properties which
we use explicitly.

If £ is a function of spin-weight s, then

7 = 0& = —(sin 0)*(d, + icsc 00¢)(sin O)°&
has spin weights s 4+ 1 and
{ = d& = —(sin 0)~%(9, — i csc 0¢@)(sin H)*&

has spin weight s — 1. In particular the spin-s spherical
harmonics satisfy the following relations:

0,Y,(0, 9) = [l =)+ 5 + DP.1 Y00, ¢),
3., Y0,(0, 9) = =10+ 90U — s + DR Y100, 9),
Vim0, ) =0 for |s| >/,
Y00, @) = (=™ Y, .0, ¢),
and ¢Y,,,(0, ¢) = Y,,.(0, ¢), the usual spherical har-
monics. For fixed s the spin-s spherical functions

satisfy a completeness relation and orthogonality
conditions:

fs )—,lm sYl’,m’ Sin 0 de d¢ = 6ll’6mm’ .

One further important property is that if & has spin
weight +1, then 0& is a divergence on the sphere;
similarly, if & has spin weight —1, 8¢ is a divergence
on the sphere.

°E. T. Newman and R. Penrose, Report to Conference on
Relativistic Theories of Gravitation, London (July, 1965).
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A series solution of the above differential equation is presented.

1. INTRODUCTION

HE purpose of this paper is to present the solution
of a certain partial differential equation in three
variables. It appears that the solution of the equation
in question is not available in the literature nor does it
seem feasible to solve it by conventional methods.
The solution presented here is in the form of a series
of powers of two of the variables, the coefficients
depending on the third.
There is one instance of a physical problem in which
a special form of this equation arises. If one considers
the density matrix of a harmonic oscillator coupled
linearly! to a two-level system, then in the representa-
tion that diagonalizes the Hamiltonian of the oscil-
lator and in lowest-order perturbation theory, one
obtains a difference-differential equation for the
matrix elements of the density matrix.? If Glauber’s® R
function is used as a generating function for the matrix
elements, the resulting equation for R is similar to the
one discussed here. Since it is possible that the
solution of the equation may be useful in a different
physical context, it is felt that it might be worth
having in the record.

2. METHOD OF SOLUTION
Consider the partial differential equation

» ? ? d
— + by — —\|\P(x,y,t) =0,
(axay+"xax+ yay+cxy+az) (31
H

where a, b, ¢ are constants and with the initial condi-
tion

P(x, Y.t = 0) = (D(x’y)’ (2)
where ®(x, y) is a known function. It is assumed that

* Present address: Argonne National Laboratory, Argonne,
Illinois.

1 By “linearly” it is meant that the coupling is linear in the creation
and annihilation operators of the harmonic oscillator and that the
interaction does not change the populations of the two-level system
appreciably.

2 G. Hok, M. Barasch, P. Lambropoulos, and E. K. Miller,
Air Force Avionics Laboratory, Wright-Patterson Air Force Base,
Ohio, Technical Report AFAL-TR-66-27 (1966).

2 R. Glauber, Phys. Rev. 131, 2766 (1963).

®(x, y) possesses a Taylor series expansion around the
point (x =0, y = 0).
Let us assume that P(x, y, t) can be written as

2] o0 xm n

m=0 n=0 (m!nl)
on the condition that such a representation exists.
From the initial condition (2) and the assumptions
about @, we have

(0™ D[0x™0Y" )50
=0, @)

mnO =
Ponl0) (m!n!)%

Substituting Eq. (3) into Eq. (1) and equating
coefficients of equal powers, one obtains

d
= E pmn(t) = ampmn(t) + bnpmn(t)

+ 1(m + D™+ DEPminyinsn®
+ e(mm P 1y im0y (D)- (5)
Now, for m > n we introduce

nd
o = P23 (6a)
n!
and for m < n we introduce
1
B = Pon(2). (6b)
m!

Clearly, for m =n, f,, = &um = Pmm- Upon sub-
stitution into Eq. (5), one obtains

d
- d_tfmn = amf’mn + bnfmn + (n + 1)f(m+1)(n+1)

+ cmf(m—l)(n—l)

(7a)

and

d
— = Zpy = amg,,, + bngmn + (m + l)g(m+1)(n+1)

dt
+ cngim-vya-n- (7)

We now observe that if we consider a subset of f°s
or g’s for which m — » has a fixed value, then the
elements of this subset are coupled to each other and
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to no elements of another subset corresponding to a
different value of m — n. Thus, letus set m =n + /
in Eq. (7a) and » = m + /in Eq. (7b). Moreover, to
compress notation, we set f,,n, = f¥ and g,min =
g, By letting / vary from 0 to oo, we obtain all
coefficients. The equations that we now have are

ﬂ” (Bn + aDfP + (n + DfY,
+cn+DfY, (8a)
and
— g = (B + bDg + (m + Dg
+c(m + Dgl,, (8b)
where
B=a+b. (9)

For Eqs. (8) to be consistent with Eqs. (7), f{, and
g'? are so defined that they vanish for n = 0.

To solve Eq. (8a), we introduce the generating
function F¥(Z, t) defined by

FO(Z,1) = 3 fO(0)Z". (10)
n=0

Multiplying Eq. (8a) by Z" and summing from 0 to o

one finds that F© satisfies the following partial

differential equation:

aF(l)
2

(1)
+(zz+ﬁZ+1)a—F—

+ [e(l + DZ + al}F¥ =0. (11)
Similarly, introducing the generating function

Z U O7AN (12)
we find that it must satisfy the partial differential

equation

aG(l)
ot

G‘”(Z, t)

(1)
+ (¢Z® + BZ + 1)ai

+ (e(l + DZ + bDGM = 0. (13)
The problem has now been reduced to solving a
first-order partial differential equation which can be
easily done by the method of characteristics. The
program is to solve Eqs. (11) and (13), express the
solutions as series of powers of Z and thus determine
f9(¢r) and g!¥ from which one can obtain p,,,(¢) and
hence, P(x, y, t).
According to the method of characteristics,? Eq. (11)
is equivalent to

_ dz _ dF®
cZ*+BZ+1  (c(I+ 1DZ + a)F¥’

¢ R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1963), Vol. II.

(14)
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In the general case in which g, ¢ # 0, we have

ZP+ BZ+1=c(Z—r)Z —ry),

-4+[(-1)

It is now straightforward to solve the first of Egs. (14).
The result is

(15)

where

(16)

e =

ec(rl—fz)t + y

Z() = 4(ry + 1) + #(rs — rl)ec(n—rz)t —,’ an
where
y = Zy— 1y (18)
Zy—n
and Z, =Z (t = 0).

Having Z(¢), one can solve the second of Eqs. (14),

thus obtaining
F(l)(Z, t) — Fal)(zo)e(crl(l+1)+al)t( 1 -9 )l+1’ (19)
V4

ec(rl—rz)t _
where
F(Zy) = Ef D(0)Z3. (20)
From Egs. (17) and (18), one obtains
v = exp [o(r, — ry] 212 1)
Z—nr
and
Zy=3(ri + r) + 3(ry — 1)
X Cxp [C(rl _ r2)t] + (Z — rl)/(z — r2) (22)

exp e(ry — )l = (Z —r/(Z — 1)
Substituting into Eq. (19), one has an expression for
FW(Z, t) from which one can calculate

) " rw
o= ),
To obtain g!¥(r), one simply replaces a by b and
f(0) by g(0) in the expression for f{¥(¢) as one can
see by simply comparing Eq. (13) to Eq. (11).

This completes the formal solution of the problem.
The resulting series for P(x, y, t) is fairly cumbersome
and we refrain from presenting it here, since it only
involves some further algebraic manipulations. We do,
however, present the final result for two special cases
which are relatively simpler and potentially more
useful.

(23)

A. Special Case I: ¢ =0, 8 #0

To handle this special case, one has to go back to
Eq. (14), because Eq. (17) is not valid for ¢ = 0.
Then we obtain

dz dFt®
= 1= alF® @9




SOLUTION OF A DIFFERENTIAL EQUATION

These equations give

Z(t) = (Zo + f e — (25)
and
FO(Z, 1) = FP(Z)e™ = 3 FO0)Z5. (26)
n=0

Using Eq. (25), Z, can be expressed in terms of Z and
t. Substituting into Eq. (26) we have

/3—1]7;.

Application of the binomial theorem twice leads to

FOZ,1) = &3 fOOIEZ + fe™ — 71 (27)
n=0

Lo} n n—r
FUZ,=e"3 3 3 f0(=1)
n=07r=0 ¢=0
n! e—(n—r)ﬂtﬂ—(q+r)zn—r—q, (28)

rlg!(n—r —g)!
which upon interchanging summations can be written
as

F(“(Z, t) _Zzs alt% z f(l)(o)( 1)1'

n! —(n—r)piQs—
e PG (29
rist(n —r — s)! p (29)
From this equation, we obtain
f(l)(t) _ ealt z zf(l)(o)( l)r
n! e~(n—r)ﬂtﬂm—n. (30)

m!t(n —r — m)!

To obtain g‘wll’(t), we replace f{V(0) by g{¥(0) and
multiply the above equation by exp (b — a)it; to
obtain fO(t) = p,,(1), we simply set /= 0. Now
using Eqs. (6), we can determine p,,,(¢) for all m,n
and the final solution for P(x, y, f) in this special
case is

o0 maon—-

P,y =3 X3S p (=1

m=0 m. n=m r=0

n! e—(n-r)ﬁtﬁm—n
rtm!(n —r — m)!

o0 n-—-m

+3 21/(m+l)' > 2

1=1m=0 n=m r=0

X {ealtp(n+l)n(0)xm+l ™ + eblpn(n+l)(0)xmym+l}(_l)r
|
n! (31)

e-—(n—r)ﬂtﬁm—n'
rim!(n —r — m)!
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To verify that the initial condition is satisfied, one
should note that

m (___1)1‘

r=ori(m — r)! (32)

= 6m0a

where 9,4 is the Kronecker delta.

B. Special Case II: a =b =¢c =0
For this case, Eq. (14) reduces to

(1) )
oF _ oF (33)
ot 0z
which is satisfied by any function of the form F*)(Z +
1). Clearly, in order to satisfy the initial condition we

must take

FZ, 1) = Ef 2ONZ + 1. (34)

s’
Using the binomial theorem, interchanging summa-
tions, etc., we obtain

= E S0 ——— (35)

r=n ( n)'

Note that in this special case, g‘”(t) is obtained by
simply replacing f(0) by g'?(0) in Eq. (35). Again
using Eqs. (6) to express f and g in terms of the p’s
and after some rearrangement one obtains

W w  © am+n+2ad)
Pu(x,y,) =23 X Z (_‘_—‘)m_o

m=0 n=0 g=0 \OX"T9Gy" ¢
1
x f(m + D'(n + CI)] x™y"e (36)
m!nlqg!

It should be noted that in this special case, one
could separate variables and solve the resulting
partial differential equation in two variables by using
a two-dimensional Fourier transform. This, however,
is possible only when ®(x, y) can be expressed as a
two-dimensional Fourier integral.

ACKNOWLEDGMENT

The author wishes to thank Dr. E. Marom for a
discussion.



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 8,

NUMBER 11 NOVEMBER 1967

New Form of Characteristic Functional for Cascade Processes

W. T. Scorr
Department of Physics, University of Nevada, Reno, Nevada

(Received 20 December 1966)

The characteristic functional for an energy-dependent cascade process is redefined so as to introduce
the arbitrary function without using exponentials. An immediate consequence is that the functional
becomes the function at r = 0 when the process is multiplicative with one particle at the initial time.
A simple one-component model of a cosmic-ray shower is used to illustrate how this definition leads
directly to (a) a simple form of the Chapman—Kolmogoroff equation, (b) forward and backward integro-
differential equations for the functional, and (c) the derivation of all probability functions of interest
for the process. An example is given of the distributions in number of particles at different depths when
the total cross section for muitiplication is proportional to the energy. Some general forms of functional
are proposed. The extension to electron-photon showers is outlined.

I. THE CHARACTERISTIC FUNCTIONAL

HARACTERISTIC functionals have found con-
siderable use in treating stochastic processes. It
appears, however, that with a change of definition
such functionals can be even more useful. It is the
purpose of this article to present a modified definition!
of the characteristic functional and illustrate some of
its consequences. :

An example of an energy-conserving cascade shower
with energy loss will be used, but the method is not
restricted to such processes. We assume that we have
particles that can duplicate themselves, i.e., a single
one converts into a pair of like particles. The proba-
bility per thickness d¢ of matter traversed that a
duplication occurs will be taken as a given function
q(E, u) du dt of the energy E of the original particle
and the energy u of either of the daughters, the other
having energy £ — u. We assume symmetry between
the daughters:

q(E’ ") = ‘](E’ E - u)' (1)

The total probability of a duplication occurring in
thickness dt is therefore

E
B(E) dt = dtf q(E, u) du. 2
0
We further assume that in a .path length df, any
particle loses energy f(E) dt. No scattering leading to
angular or radial dispersion is considered. Finally, we
assume that once a particle reaches energy zero it is
lost (or ceases to be counted).

Suppose now we have one particle of energy E,
incident normally on a layer of matter at t = 0. A
complete description of the statistics of the shower at
any thickness ¢ is contained in the set of master
functions®3

Pn(Eg; Ey, By, *

1 Earlier given in W. T. Scott, Phys. Rev. 86, A590 (1952).

2 W. T. Scott, Phys. Rev. 82, 893 (1951).
3 H. J. Bhabha, Proc. Roy. Soc. (London) A202, 301 (1950).

°’EN;t)dE1s"',dEN9 (3)

which give the probability that at ¢ there are exactly N
particles of energy E, to E, + dE,, E, to E, +
dE,, -+, Ey to Ey + dEy. The initial condition on
Py, is clearly

Py(Eg; Ey, - )

We define the characteristic functional of the process
by the equation

o0 1 o
C{O'(E); E,, t} = z - dE,o(E,)
N=o N Jo

> Ex; 0) = 0510(E; — Ey).

x f dE,o(Ey - f dEyo(Ex)Py(Eo; Er, -+, En, 1).
0 0
)

The variable C is a functional of the arbitrary func-
tion ¢(E) and an ordinary function of the parameters
E, and ¢. The letter E on the left-hand side of (5) is of
course a dummy variable and will only be included
when needed for clarity. An immediate consequence
of this definition over the usual one* in which exp i6(E)
is used in place of ¢(F) is that C becomes o(E,;) at

=0:
C{a(E); Ey, 0} = o(Ey), 6

as is easily seen from (4) and (5). The variable C as a
function of E, and its arbitrary function-argument
belong to the same set of functions and become
identical at 1 = 0.

The normalization property of P, becomes merely
that C = 1 when o is the constant 1:

C{l; Ey, 1} = 1. (N
Consequently, convergence of the integrals and of the
sum in (5) are assured if o(F) is a positive-valued
integrable function less than or equal to unity. The
characteristic functional will then have the same
property:

0<aE)SL; 0LC{o;E, 1} <1 (8

4 See, for instance, M. S. Bartlett, An Introduction to Stochastic
Processes (Cambridge University Press, Cambridge, England, 1955),
pp- 80 and 148.
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A restriction on the function ¢(E) is that it be unity
when E = 0. In fact, if E, — 0, the shower disappears.
We assume that §(£) remains finite as E — 0, so that
a particle of nearly zero energy becomes lost to the
shower almost immediately. Consequently, each
Py —0 for t > 0, except that Py(Ey, t)— 1. As a
result we have

C{o(E); 0,t} =1, ®
which entails from (6) that
o(0) = 1. (10)

Note that ¢(E) is not required to be continuous,
although it must be integrable, so the condition (10)
needs only to hold ar E = 0. The restriction (10) will
not hold if B(E) = 0, for then the shower does not
die out.

II. DERIVED FUNCTIONS

Various generating functions may be found from C.
In the first place, let o(E) be a constant z < 1 (except
at £ =0). Then C becomes the generating function
for P(N, E,,t), the probability that there be N
particles of any energy at depth ¢ when the initiating
energy is Ey:

C{Z’ EO, t} = G(Z’ Eo, t) = z ZNP(N’ EO’ t)' (11)
N=0

(Note that when each E; is integrated from 0 to oo,
all permutations of N particles are counted.)

Now let n(E — E’) be the step function that is 1
when E > E’ and 0 when E < E’. Then

C{1 + (z — Dn(E — E); Ey, 1}
= g(z, EO’ E,’ t) = z ZNP(N: EO’ E,’ t)a (12)
N=0

the generating function for the probability p(¥, E’,
E,,t) of finding N particles of energy greater than
E’, regardless of the number with lesser energy.

The functional derivative of C with respect to o,
calculated at an energy E,, is defined in the usual way
by adding an infinitesimal delta-function increment
ed(E — E)) to o(F) at E = E, and taking the limit of
the increment of C to the infinitesimal multiplier e.
The derivative will be denoted by a subscript 1 and
by the inclusion of E, as an argument:

Ci{o(E); Ey; Ey; t}
— tim L [C{o + €d(E — E,); E,, 1} — Clo; Ey, 1}]
€e=0 €
= (d[de)C{o + (E — E,); Eq, t}].p- (13)
Functional differentiation may be carried out on
the series in (5) by simply replacing each ¢ by
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O(E — E,), one at a time. Repeated derivatives are
defined in the same way, and denoted by successive
subscripts 2, 3, 4, - - - and the inclusion of more new
arguments E,, Eq, E,, - - - .

Now it is easy to see how to find the P’s from C:
We have

C{0; Ey, t} = Py(E,, 1),

Ci{0; Ey; Ey; t} = Py(Ey; Ey5t),
Cuf{0; Eg; Ey, -+, Egg; 1}
=Py(Ep Ey, -+, Eyst). (14)

In fact, Eq. (5) is just the functional equivalent of
Maclaurin’s expansion.®

Consider now what happens if we set ¢ = 1, in the
Mth functional derivative. Each term in (5) from the
Mth onward will have lost M ¢’s and had the corre-
sponding integrations replaced with fixed energy
values. Each distinct physical case will be counted
N!/(N — M)! times in the Nth term. We find

Cu{l; Ey3 Ey; -+ - Eyps t}

© 1 © ©
=Y ——— | dEyy--+| dE
N=2M (N — M)!J:) M J:) N
X PN(EO;EI’EZU'EM’EM+15”"EN;t)
(15)

= Ky(Eo; E1, Ey, - -+, Epps 1),

where Ky, dE, dE, - - - dE,; is seen to represent the
probability that there be (at #) M particles in the
energy ranges dE;, dE,, -+ ,dE;around E,, Ey, - - -,
E,;, and any number of other particles.

The function K;(E,; E,; t) is of special importance.
The probability of finding a particle in E; to E; + dE,
regardless of what other particles may be present is
also the mean number in that interval, so this function
represents the mean-energy spectrum in the shower
at depth . The integral of K, over E; therefore
represents the mean number of particles:

(Nhow = 3 NPV, Ey, ) = [ “dEKi(Es, Ex, 0. (16)
N=0 0
It may be shown by ordinary probabilistic reasoning

that the integrals of the K, give the combinatoric
moments

KM, Eg, f) = (N(N = 1)+ (N — M + D)av
=f dE, -+ dEyKy(Eo; Ey, B, -+, Exr, ). (1)
0

The K, are clearly the coefficients for a generalized
Taylor’s expansion of C{c; E,, t} around the function

5 V. Volterra, Theory of Functionals (Dover Publications, Inc.,
New York, 1962), p. 26.
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a(E) = 1. Thus we can write

Clos Bt} = 3 - J “dE[o(E) — 1]

M=0
x [ " dE[o(Ey) — 1] - - j “dE yylo(Ea) — 1]

X KM(EOs EI’E23 T '3EMst)- (18)

If we put o(E) = z in (18), expand the binomial,
and compare the results with (11), we have the
combinatory result

o ¢ 1yM—-N
P(N,Eo,t)= Z( 1) K(MaE09t).
M=~  NI(M — N)!

It was shown in an earlier work? that K (E,; E,; 1)
is a Green’s function from which all the higher K,
may be calculated in order. Hence C can be found in
principle from K, , but P(N, E,, t) can be found more
directly via Kin (19). As usual, we can find K(M, E,, t)
by expanding G(z, E,, t) in (11) in powers of z — 1,
since it follows from (11) that

(19)

1') 2 (20)

Gz, Eo, 1) = S K(M, Ey, 1) E=D
M—0 M!

III. CHAPMAN-KOLMOGOROFF EQUATION

The various forms of the Chapman-Kolmogoroff
equation® are expressions of the Markoff character of
stochastic processes, namely the fact that the inter-
mediate state of the process at any time ¢ is the
initial condition for the process following ¢ The
equation takes a particularly simple form when written
in terms of C. We have in fact that the function
argument o is simply C at ¢ = 0. Generalizing, we have

C{G;E05t+ t,} = C{C{G, E, t,};EO’t} (21)

for any two times ¢ and ¢’. A formal proof of (21) may
be constructed using standard probabilistic argu-
ments, taking the energies E; - - + E for each possible
shower at depth ¢’ as the initial values for N independ-
ent showers starting at ¢" and observed at 7 4 ¢'. The
argument is lengthy but not difficult and is omitted
here.

An explicit formula for C{o; E,, t} may be de-
scribed as a rule for transforming a function o(E,)
associated with =0 to another function C(Ep)
associated with time ¢. As t varies, C follows a tra-
jectory in the function space of the functions o.
Since the Py are uniquely determined by the initial
energy and the functions q(E,4) and B(E), these
trajectories must be nonintersecting.

8 W. Feller, An Introduction to Probability Theory and Its Appli-
cations (John Wiley & Sons, Inc., New York, 1957), Vol. I, 2nd ed.,
pp. 370 and 424.
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For any fixed E, and any S(E) > 0, a shower has
only a finite extent limited by the penetration depth
of the origin particle in the (rare) event that it undergoes
no duplication at all. We have

Eo JE
t x = —_ ., 22
ma . BE) (22)
Thus we must have
C{o; Ep; tmax(Eg)} = Py(Ey, tmax) = 1, (23)

showing that C approaches unity in successively more
and more dimensions of the function space (each
representing a value of E,) as ¢ increases indefinitely.
Equation (23) is seen to be an extension of the result
given in (19).

The Chapman-Kolmogoroff relation (21) may be
used to define C for negative times by setting r 4- ¢' = 0.
However, this definition will only hold for ¢’s and
values of 7 that do not violate (9). As ¢ gets more and
more negative, any o except ¢ = 1 will sooner or
later violate this restriction.

IV. INFINITESIMAL TRANSFORMATION
GENERATOR

The variation of C with ¢ is determined by the
physical processes expressed by ¢(E, u) and (E). We
can find the generator of an infinitesimal transforma-
tion of C from ¢ to ¢ + dt, or equivalently from 0 to
dt, by considering only the physical processes of zero
and first order in d¢. We have in fact

P(Ey; E,; dr)
~ [l — B(Ey) dt]0[E, — E, + B(E,) dt],
Py(Ey; Ey, Ey; dt)
=~ [q(Ey, E1) + q(E,, E)] dtd(Ey — E; — E,),

P,~0;N=0,3,4,5,---, (24)
from which follows
Clo; Ey; dt} ~ o(E,) + dtH{o; E}, (25)

where the functional H is the infinitesimal generator,
given by

H{o; E} = —B(E)o(E) — B(E) do(E)|dE

E
+f0 duq(E, w)o(u)o(E — u). (26)

Using (21), we find immediately that

C{o; Ey; t + dt} = C{o; E,, t}
+ dt H{C{o; E, t}; £y} (27)

from which we find the nonlinear integro-differential
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equation

0C{o; E,, t}/0t = H{C{o; E; t}; Ep}. (28)

Another equation for 9C/0t may be obtained if
we first consider a general property of the functional
derivative. It follows from the linearity of first-order
variations that if 7(E) is an arbitrary function and e
a sufficiently small positive number,

C{o(E) + e7(E); E,, t} =~ C{0(E); Eq, 1)

+ efwduf(u)cl{a; Eqsu;t} (29)
0

to first order in e.
If we now replace ¢’ in (20) by dt, we find

ac{d; EO 3 t}
ot

Equation (30) is linear in C and C,, but since both
the initial condition and the physical functions ¢ and
B are contained in H, there appears to be no way to
exploit this linearity by superposing different C’s.
This equation relates to processes near ¢z =0 and
may be called the “forward” equation, to fit the usual
terminology,” whereas Eq. (28) may be called the
“backward” equation. In a certain sense Eqs. (28)
and (30) are adjoint to each other.2 They also represent
two special cases of the equation obtained by replacing
t'by t' + dtin (21):

Q_CL_G;ETO_;t'*'t} =f duC{C{o; E; t'}; Ey; u; 1}
0

=fwduC1{a; Eg; u;t}H{o; u}. (30)

x H{C{o; E,t'};u}. (31)

If ' — 0, we obtain (30), whereas if ¢ — 0, we find

(28), since we see, for instance from (28), that
Ci{o; Ey; Eqs t} = 0(E, — Ep). (32)

By functionally differentiating (28) and (30), we
can find two equations for C,{o; Fy; E;; t}:

w =J\ dqu{C{o-; EO’ t}; u, EO}
ot 0
x Cy{o;u; Eysty, (33)
0Cio; Bo; By 1} =f duCy{o; E,; E,, u; t}H{c; u}
ot 0
+f duC{o; Ey; u; t}H {o; u; E;}. (34)
1]
We note from (25) that

H\{o; E; E;} = —B(E)J(E — E,) — B(E)}' (E — Ey)
+ 29(E — E)q(E, E\)o(E — E)) (35)

7 Reference 6, pp. 426-427.
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and also that
H{l; Ej} = 0. (36)

We cannot readily evaluate H{0; E,}, however, for
the requirement (10) entails a nonvanishing value for
do|dE.

We can now find two equations for K,(E,; E;; t),
by setting ¢ =1 in (33) and (34): The backward
equation is
M}M =f duH\{1; Eo; u} Ky(u; Ey; 1)

ot 0
2K,

Ey
42 f dug(Eq, w)Ko(u; Ey3 1), (37)
0

= —B(E)K\(Ey; E;; 1) — B(Ey)

whereas the forward equation is

OKy(Eg; Eqs 1)

J AuK(Eq; us )H,{1; u; Ey}
ot 0

oK,
JE,

+2 f dug(u, E)Ky(Eo; u3 1). (38)
E

= —B(E)K\(E,; E,; t) + B(E,)

Higher functional derivatives can be taken and
evaluated at o = 1, thus reproducing the hierarchy of
equations given in Ref. 2. If on the other hand we
evaluate the equation for C,C;,C,, -+ at =0
(using integration by parts on the do/dE term before
setting ¢ = 0), we find a set of equations for Py in
which each dPy/0¢ involves Py, evaluated with one
of its energy arguments equal to zero, again as in
Ref. 2.

V. NUMERICAL EXAMPLES

A simple example for which C{o; E;, ¢} can be found
is that for which ¢ is a constant,® B(E) = ¢E, and §
is zero for all E. Then (28) becomes

oC Eo
— 4+ qE,C =gq| duC{o;u;t}C{o; E, — u;t}.

ot )
39

If we define the Laplace transform of C with
respect to the variable E, by

C{a; 4; 1} =J e*2C{o; E; 1} dE
0
together with

(40)

(h) = fo * B o(E) dE, (41)

8 The example of ¢ = 1 with 8 zero or not zero was treated from
a less advanced point of view by W. T. Scott and G. E. Uhlenbeck,
Phys. Rev. 62, 497 (1942).
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we readily find from (39) that

C{3; 451} = 6(qr + W11 — qra(gt + ). (42)
Using the usual Laplace inversion integral with
gt + 2 replaced by 4, we get

1 C+iw
C{O‘;Eo,t} = — d2
2mi Jo-ixe
&(4)
x exp (AE, — qtE)) ———— , (43
P(AE, — ¢ O)I—qtc?(l) (43)
where the integration is taken to the right of all

singularities.
Letting ¢ = z (except at E; = 0 and ¢ = z/4), we
readily find G(z, E,, 1):
Gz Eo. 1) = - f dhexp [(3 — qE,]

2mi A — gtz

= z exp [(z — 1)qtE,].

The probability of there being N particles is then

(44)

P(N, Egt) = e "Eo(qtE)¥ (N — 1)1,  (45)
and the combinatorial moments are
K(M, E,, 1) = (M + qtE)(qtE)™ . (46)

The mean is then
(Nyav = K(1, Ey, t) = 1 + qtE,
and the variance is
(N®y — (N)2, = K2, Eg, 1) + K(1, Ey, t)
— K¥1,E,y, 1) = qtE,, (47)
showing that once E, and (N)av are large enough,
the distribution is essentially Poisson.

When § is not zero, the Laplace transform ¢ must
satisfy the equation

oc  aC .

Py qa/l+ﬂ(l AC) = qC%

A dimensionless version of this equation may be

obtained if we replace C(q/B)} by C, A(B/g)t by 4,

E,(q/B)} by E,, and 1(8g)* by . More simply, we can

merely choose units of energy so that 5 = ¢ = 1. Thus
we write

(48a)

o aC X
=41 -iC=C
o 0
which becomes a Riccatti equation if we replace ¢ by
the variable " = ¢ + A. We find for the solution,

Ci{é; 2; 1)
1 2 A+t 2
= {6(/1 + DM (A4 DE(A+ 1) — l]f v dy}

(48b)

x {/1&(/1 + 0 [+ D6 + 1) — 1]

. At o, -1
X |:eé’1 + Zf ety dy:“ .
i

(49)
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The transform of G is then
Gz, ,, 1)

. i+t
2t 007 _ (3 + )z — I)J e dy
p

2 2 A+t 2
Az () 4z — 1)[e%’1 + AJ et dy]
A

(50)
Expanding in powers of (z — 1), we get

e 1l A+ < M M-1
(J(Z’ }'5 t) - Z + Zze%tz+}'t 1121(2 - 1) (_1)

2 . ty, M-1
|:1e%t +At (l + t) — l(l + t)f e%x +xd dxj|
X . ;

fedtrar
(51)
whereas in powers of z, we find
G(z, 4, 1)
¢ 2
f e‘é‘w ~+axd dx e%tz—H
0

+

= E b, 2
1+ zf At gy (14 t)2|:1 + zf phatrei dx:|
0 0

) Jett' i N-1
V|1 — .
¢ 2
! { (A+t)(1+lfe%”+“dx>:|
0
(52)

From (51) and the usual Laplace transform inver-
sion formula we find

X

‘M8

N

1 _adp(A+0)
Nyay = — | dA AEg—At—}t
(N 2mi ¢ 2
=L+ HEy—D]; 0<t<E, (53)
=0; E,<t.
We also have

K(23 EO ’ t)
= <N2>av — (N)av
_ =2 [ dA(+ DMt

2mi

x [ze%“ — G40 — A+

t 2
X f dx ¢ ”’1:]
[H]

= (412 — 2UE, — 2)
+ e (41" — 4£°E, + PEZ — 106® + 4E, + 2)

2 t 2
+ e P(21°E, — 41* + 4t)2J~ dx et
0
0 <t <iE,
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Eo =100

60(

F1G. 1. The mean number of
particles (N)av as a function of
depth 7 in the shower described
in the text, for different initial
energies E; . Dimensionless units
are employed.

<N,

- e—it"’(4t2 — 2tE, — 2) From (52) we can read out directly the Laplace

5 . . transforms of each P(N, E,, t). Figures 3-10 show
+ 2(1 — ) exp BE; — 2tE, + t°)

2 t & 2 .30r
+ e (21, — 41® + 41) dx e ; v
2t—E;
1E, <t < E,
=0; E, <t (54) 25}
The dimensional forms for (N)sv and (N?%)gy —
(N)av may be obtained from (53) and (54) by replacing
t by t(Bq)*, Eet by qEyt, and E, by Ey(g/B):. The ol
results agree with Eqs. (29) and (30) of Ref. 8 except ' feos
that the lower limit for the x integration in the case - '
1E, < t < E, was mistakenly set at zero in the earlier
reference. =
Figures 1 and 2 show curves of (N)sv and the w5y e o
variance divided (N)av, Py
KN%ay — (N)3v]/(N)av.
Nield
1.5
05
o T e — 20 % 0 20 36 40 % 60 7o
t Eo
F1G. 2. The relative fluctuation or ratio of variance to mean, for FiG. 3. The probability P(N, E,, t) of N particles at depth ¢

the shower in the text, as a function of depth ¢ for different initial when the incident energy is E,, as a function of E, for t = 0.3
energies E; . dimensionless units.
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350 N=3
30 30
N=3
25 251
t=1.0
.20 20| t=20
:— N=6
(-]
w
z
a —
a N=10
5} WIS
z
a
o J0f-
05— 051~
0 T | { [ N y o b 1 1 L 1 L J
0 0 20 35 20 % o5 %o 0 10 20 30 40 50 60 70
Eo Eo
FiG. 4. Same as Fig. 3, for ¢ = 1.0. FiG. 5. Same as Fig. 3, for 1 = 2.0.
3or
‘N=3
25}
N-8 N=3
Eo =10
20!
°
w
Z 15} FiG. 6. P(N, E,,1) as a function of
e depth for N = 3, 6, and 10 at E, = 10.
10t
N=10
05
°o— 3 & 1 2 3 ]



F1G. 7. Same as Fig. 6, for N =
3,6, 10, and 20 at E, = 20.

Fi1G6.8. P(N, E,, t) as a function
of N for t = 0.3, 1.0 and 2.0, and
E, = 10. The vertical lines repre-
sent the mean values (N)ay. The
dashed curve represents Poisson

statistics for r = 0.3.

Fic. 9. Same as Fig. 8, for
Ey = 20. A Poisson distribution

is drawn in for ¢t = 2.0,

.20

P(N,Eg,1)

05
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.20r
ABF EO = 40
uf ok FiG. 10. Same as Fig. 8, for
z ° Poissan for t=0.3 E, = 40. A Poisson distribution
o t=10 is shown for ¢ = 0.3.
t=0.3
A ‘
05}
o] i A \l
o] 12 15 18 21 24 27
N

graphs of P(N, E,,t) for selected values of N, E,,
and ¢, calculated by the Laplace inversion techniques
of Bellman et al.®

VI. A CLASS OF CHARACTERISTIC
FUNCTIONALS

We have not been able to find the characteristic
functional for any physically more realistic case such
as that of the Furry'® model with ionization in which
f is a constant and ¢q(E, x) = 1/E. However, it is pos-
sible to generate characteristic functionals that satisfy
the Chapman-Kolmogoroff equation and may or may
not have physical significance, by the following device.

Choose any invertible operation T that transforms
an arbitrary function ¢(E) into a function 7(u) in some
appropriate space. We write

T{o(E); u} = ()
and the inverse

T-Yr(w); E} = o(E).

(55a)

(55b)

Next we choose a function ¢(¢) that has an inverse,
so that if

s = ¢(t),

t = ¢7Y(s).
Now we define C by the relation

Clo; By, 1} = T{T{o(E); $ld~(w) + 11} + at; Eg},
(57)
where a is a constant and 7! operates on the variable
pin ¢t
To test (57) in (21), let us write
o(E) = T{T{o'(E"); $[¢7'(w) + ¢'}} + at’; E}.

® R. E. Bellmann, H. H. Kagiwada, R. E. Kalaba, and M. C.
Prestwood, Invariant Imbedding and Time-Dependent Transport
Processes (American Elsevier Publishing Company, Inc., New York,
1964), Chap. 1.

10 W. H. Furry, Phys. Rev. 52, 569 (1937).

(56a)
then
(56b)

When this expression is substituted in (57), we see
by (55a) that the inner operation T yields

T{d'(E"); ¢l () + ']} + at’,

evaluated for ' = $[¢~(w) + t]. We have
HEUBIF ) + 1) + ') = $I$7Hw) + 1 + 1),

so we obtain
C{C{o', E; 1'}; Ey; 1}
=THT{c'(E); [¢7 () + t + 1]} + a(t" + 1); Eo}
= C{o'(E'); Ey; t + t'},
thus showing that (57) satisfies (21).

It can be shown, for instance, that (49) is a special
case of (57) with v
"

) = T{o: u} = ——— —["eb*ay.
(1) = T{o; u} PR Le y
o(E) = T Yr; E}

(58)

_L f eF il le“’/z ’
2miJ A () + L e dy — )2
(1) =1t
$7'(6) =5,
a=0.

The simpler case in which ¢ is constant and § =0

can be readily shown to be a case of (57) with
1
(@) = T{osu} = —,
o(w)
AE

L[ (59)
2a7) ()

$(1) = qt,
$7(s) = s/q,

a= —q.

T“I{T; E} =

VII. GENERALIZATION TO ELECTRON-
PHOTON SHOWERS

When two kinds of particles are involved, the
characteristic functional has two components. As
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an example, we give the definition and the infinitesimal
transformation generator for an electron-photon
cascade, neglecting lateral spread. The master func-
tions are as follows: The probability that a shower
initiated by an electron of energy E, will generate
N electrons of either sign of energies F,, - - -, Ey and
v photons of energies & ,--, &, in thickness ¢ is
written as
P;VV(EO;EI’.'.aEN;als.'.’av;t)’ (603)
while the corresponding probability for a shower
initiated by a photon of energy &, is
Pyo(Eos Eys -~ Ens 81500+ 8,5 0). (60b)
The two components of the characteristic functional
will each be functionals of two arbitrary functions
¢(E) and 7(§), as well as of one initial energy E, or
& and the thickness t. We have, for instance,

C*{a(E), 7(€); Eo; 1}

a0 o0 1
= dE dE
Nz_o vz_:o Ny! ! f N
xf d81--'f dg,
0 0
X 6(Ep) -+ o(Ep)r(8) - - - 7(8,)

X PIGVV(EO; Ela e EN’ 81) v 98v;t)' (61)

The expression for C” differs by having &, in place
of E, and P%y, in place of P¢y, .

Let us describe the set of physical processes involved
in the shower by four functions: (a) The probability
in dt that an electron or positron of energy E radiates
a photon of energy & to & + 48 is w(E, &) d€ dt;
(b) the probability in 4t that a photon of energy &
generates an electron—positron pair of energies E to
E+dEand 6§ — Eto§ — E—dEisy(§, E)dEdt =
y(8, 6 — E)dE dt; (c) the probability that photon of
energy & will undergo a Compton scattering in dt and
have its energy reduced to & + d&' is c(§, &) d&’ dt;
(d) an electron or positron of energy E will lose energy
B(E) dt in dt.

We readily find for the generator of infinitesimal
transformations

H*{o(E), 7(8); Eo} .
= —BEE) — olE) [ dE (E,®
+ f " IE w(E, §)r(8)a(E — 8),
(1]
H{o(E), 7(8); &}
Ey
= —(Ep f dE y(5,, E)

(61a)

8o 8o
— (&) L dg c(§,, §) + L d8 c(&,, §)o(5)

+ _L " iE W&, E)o(E)a(8, — E). (62b)
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The infinitesimal transformations are then
C¥o(E), 7(E); Ey; At}
= o(Ey) + AtH*{a(E), 7(8); Eo}, (63)

C'{o(E), 7(8); &y; At} = 7(&,) + At H'{0(E), 7(8); &}.

(64)

The Chapman-Kolmogoroff relation now becomes
two equations:

C*{o(E), (8); Eg; t + 1'}
= c{C*{o(E"), 7(8"); E; 1},
C{o(E"), 7(8); 85 1}; Eo; '}, (652)
C{o(E), 7(8); 8yt + t'}
= C{C{o(E"), 7(8"); E; 1};
CY{a(E),7(8); §,1}; &, t'}. (65b)
The backward and forward equations corresponding
to (28) and (30) become the two coupled pairs:
0C*{a, ; Ey; t}]0t

= H{C*{o,7; E; t}, C’{0,7; §;1}; &), (66a)
0C{o, 7; &, t}/0t

= HY{C*o, 7; E; t}, C*{o, 7; &,t}; &0}, (66b)
and
0C%{o, ; E,; t}

ot
o0

=f du Ci.{0, 7; Eg; u; t}H*{0, 7; u}
0

+f dv Ci{o, 7; Eo; v; t}H'{0, 75 v}, (67a)
[1]

0C*{o, 7; Eq; t}
ot

=f du Clo{o, ; Ey, u, t}H {0, 7; u}
0

+f dv C}. {0, 7; Eo, v, t}H"{0, 7, v}.  (67b)
0

vil. CONCLUSION

Many relations among probapbilities of interest for
multiplicative processes involving a parameter like
energy or age can be readily and elegantly derived by
use of the characteristic functional given in this paper.
‘While its actual use in computing distributions for
physically interesting cases must await further devel-
opments, such as that of appropriate variational
principles or extensions of the Green’s function
method, the relations among the various quantities
can be exhibited with some transparency by this
method. Thus it may constitute a modest step toward
the solution of a class of hitherto intractable problems.
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A homogeneous nonlinear boundary-value problem, which reduces to the Helmholtz equation when the
nonlinearity is removed, is solved by an expansion method using as a basis the eigenfunctions of the
linear Helmholtz equation. The nonlinear differential equation is reduced to a nonlinear algebraic
system in the expansion coefficients, which can be easily solved with any desired degree of accuracy. It is
found that with only three terms in the eigenfunction expansion, a satisfactory agreement with the exact
numerical solution of the problem is obtained, even for strongly nonlinear cases. Solutions are presented
both in one-dimensional slab and cylindrical geometries. It is also shown that the method can be applied

to inhomogeneous problems.

1. INTRODUCTION

HE aim of this paper is to present a simple method

for solving a class of nonlinear boundary-value
problems, which reduce to the Helmholtz equation
when the nonlinearities are removed. The problem
presented arose in connection with the determination
of the distribution of the energy released in a nuclear
reactor as a result of a power excursion.

Explicit solutions are given in one-dimensional
geometries for a homogeneous boundary value
problem with a certain type of nonlinearity. It is then
shown that the method can also be used to solve
inhomogeneous boundary value problems.

2. NONLINEAR HELMHOLTZ EQUATION

Ergen! has shown recently that the distribution of
the energy released in a nuclear reactor as a result of a
power excursion is given by the solution of the
following nonlinear boundary-value problem:

Vip(x) + (1 — ep)y = 0,
y(S$) =0,

where S is the domain boundary, and c is a given
positive constant. We have called Eq. (1) a nonlinear
Helmholtz equation because if the nonlinearity is
removed (¢ = 0), the classical Helmholtz equation is
obtained. In this paper, we only consider one-
dimensional and symmetric domains. Proofs of the
existence and uniqueness of the solution of nonlinear
elliptic boundary-value problems are very difficult to
obtain. For equations of the general type (1), Courant
and Hilbert? show that solutions exist if

1 — eyl <N, 2

* This work was supported by the U.S. Atomic Energy Commis-
sion under Subcontract C-276 with the Phillips Petroleum Company.

t Present address: Intenational Business Machines Scientific
Center, Palo Alto, California.

1 W. K. Ergen, Trans. Am. Nucl. Soc. 8, 221 (1965).

2 R, Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1962), Vol. II, p. 369.

(1

i.e., when the nonlinear function in Eq. (1) is bounded
in the domain.

From the physical nature of the problem, we
conjecture that Eq. (1) has a solution which is unique,
positive, and bounded. Using this assumption, the
following plausible argument indicates that the solu-
tion has an explicit upper bound. By the boundedness
assumption, the solution of (1) must have at least a
regular maximum in the domain, excluding irregular
distributions. Let one such maximum occur at X, then

y®) =M, dy(®)ldx =0,

3

V(%) = ald?y(%)[dx?*] = M(cM — 1) < 0. ®

In slab geometry, a = 1; for cylinders, a =1 for
% # 0 and a =2 for ¥ = 0; for spheres a = 1 for

¥ # 0 and a = 3 for x = 0. This is because if the
maximum is at the origin,

Ly _ &0

lim
dx?

z=0X dx

b

by L’Hopital’s rule. But for x # % we also have
Viy(x) = yley — 1) <0, @

because y < M. Hence, there can be no minimum for
any x, because this requires

dy(x)/dx = 0, V3p(x) = a(d?®/dx*) > 0,

in contradiction with Eq. (4). Therefore, the only
maximum of the solution occurs at ¥ By symmetry,
this maximum must be at the center of the domain.
From Eq. (3), we have

yx) < y®) =M < 1fe. )

In what follows, an expansion method for the
solution of Eq. (1) is presented. The expansion uses as
a basis the eigenfunctions of the linear Helmholtz
equation associated with the problem.

2180
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3. EIGENFUNCTION EXPANSION METHOD

In what follows, we present the method in one-
dimensional slab and cylindrical geometries. The
solution to the boundary-value problem (1) is sought
in the form of a series

y(x) =v§1 A,p,(x), (6)
where ¢, satisfy the linear Helmholtz equation
associated with (1),

Ve, + Bip, =0,

P(S) = 0.
As the problem under study has symmetry, we choose
@, (x) = cos 2v — 1)(#/2R)x,
B, = 2v — 1)(#/2R), (8)
v=1,2,3,...,
for slab geometry, and

(7

@, = Jo(B,r), B,R = »th positive zero of Jy(x),
y=1,2,3,..., C)]

for cylindrical geometry. Jy(x) is the Bessel function of
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the first kind, and R is the slab half width or the
cylinder radius. Substituting Eq. (6) into Eq. (1) and
using (7), one gets
21(1 - B%)Av(pv = czlAv(pv zlAk(pk (10)
v= v= =
Equation (10) is the fundamental starting point of this
analysis. We define the j-mode approximation as that
in which only the first j summands are kept in the

summations of (10). In detail, the nonlinear term then
becomes

j i
c ZIAV%EIA;C% = c[Aigi + Agh + - - + Alg]
= k=
+ 24,4512 + 00+ 2414005 + 24,430,05
+ 0+ 240400, + 0 + 24,04;0,09;]
(11)

Using the orthogonality properties of the eigen-
functions (7), the space variable is now eliminated
from (10) by multiplying it by ¢,(x) (slab geometry) or
xpy(x) (cylindrical geometry) and integrating over the
domain. In this way, we obtain a coupled nonlinear
algebraic system in the expansion coefficients 4,:

bI'A} + bPAL + - -+ + bIAS + 203 A1 4, + -+ + 2b11 4,4,

+ 2bM%% 4,4, + -

4 2b1,2,jA2Aj 4+ 2b1»5—1'jAj_1Aj = ¢,4,,

by'A] + bA3 + - - - + bJAL + 2bPPA, Ay + - - - + 2bMPA,4,
+ 2bBA,A; + -+ 20BAA, 4 -+ 2bTVIA, A, = cyA,,

bj*AT + bA; + - + bJAT + 26V A A, + - - 4 2bI7 4,4,

+ 2% Ay Ay + - - 4 26T AA; + - + 2674 A = AL

The notation in system (12) is as follows:

2 1 B 2 l,m,n 1 B
b, = R | P1Pm dx, b"™" = R | P1FnPn dx,

¢; = (1 — BYc,

for slab geometry, and

(13)

b4 =L Rx 20, dX b"m'"=—1— Rx dx
m T R2 0 (Pl(pm H R2 0 D1PmPr H

¢; = {(1 = B)[J(B,;R)I*}/2c, (14)

for cylindrical geometry; here, J;(x) is the Bessel
function of the first kind, of order one. The eigen-
functions and eigenvalues used were defined in Egs.
(8) and (9).

In slab geometry, the integrals appearing in (13)
can always be determined in closed form. In particular,

(12)

the bl are given compactly in the form:
m g pactly

bl — (—1)"‘“[ 1
" 344(1-1)—2m

T
2 1 j\ (15)
2m—1 144 -1+ 2m

In cylindrical geometry, the integrals in (14) cannot be
obtained in closed form, but are readily obtained
numerically by Simpson’s rule. In Table I, we give the
first 10 integrals (14) required for the three-mode
approximation; they were calculated using a 21-point
Simpson’s rule.

One should note that once the b coefficients of (12)
have been calculated, they remain the same for all
boundary-value problems (1). The only new data for
each problem are the coefficients ¢, in the right-hand
side of Eq. (12), which can be readily obtained from




2182

TasLE I. Bessel integrals (14).

bt 9.744 x 10
b2 3.642 x 10-*
b 2279 x 10~
bit 1.804 x 10-*
bit —1.758 x 10~
bee 7.481 x 10~
b3 4.587 x 10~
b2 1.513 x 10-2
b3 6.434 x 10~
b3 9.937 x 10~

Eqgs. (13) and (14). It should also be noticed that, to
the order of the modal approximation used, the
nonlinear terms have been treated rigorously; that is,
no linearization of terms is involved in any order of
approximation.

4. DISCUSSION OF RESULTS

For slab geometry, the solution of Eq. (1) can be
expressed in terms of elliptic functions, and for
cylindrical geometry, the solution does not seem to be
given in terms of tabulated functions.* McKinney
solved numerically the following initial value problem
associated with (1):

Viy + (1 —cp)y =0,

y(©) =1, dy(0)/dx =0, (16)

for slab and cylindrical geometries. For clarity, in
Fig. 1 we give a qualitative plot of the solutions of (16)
in slab geometry. Using his numerical results, the
corresponding boundary-value problem (1) was
generated using for each value of ¢, the domain size
at which the initial value problem solution vanished.
In this way, for each value of ¢, the solutions of the
initial and boundary-value problems are identical and
can be compared directly.

When only the first (fundamental) eigenfunction is
kept in the expansion (6), system (12) reduces to

bi'dl = ¢4, an

JOSE CANOSA

FiG. 1. Qualitative plot of the solutions of the initial value
problem (16) in slab geometry, 0 < a, < ay-*- < 1.

or

A = ¢ /b. (18)

The results obtained from the ‘“‘exact’” numerical
solution of (1) and from the one-mode treatment are
given in Table II. For the strongly nonlinear cases,
¢ — 1, the distribution (Fig. 1) becomes markedly
different from the linear distribution, ¢ = 0. For slab
and cylindrical geometries, the one-mode approxi-
mation is a fair approximation to the exact solution
when ¢ 2 0.9 and ¢ = 0.7, respectively.

In the two-mode approximation, one lets j = 2 in
(12) and it becomes:

bi'A% 4 bEAZ 4 2b1'A,4, =
b3'A? 4 b2A% + 2b%A,A,

clAl ’

(19)

CsA,.

In the three-mode approximation, we let j = 3 in
(12) and this becomes:

bi'A} + bP?A% + bPAZ + 2b}'A,A4, + 2b34, A,
+ 26Y%% 4,4, = ¢4,
by A + b3PA; + bPPAZ + 2b%A,4, + 2bV%34, 4,
+ 2b5° 4,4, = cpA,,
DA + BEAL + bRAD + 2BV, A, + 2674, A,
+ 2b3A,A4, = cyA;, (20)

and so forth. Nonlinear algebraic systems such as

TasLE 1. One-mode approximation vs exact solution.

Max value of y at domain center

Integral of solution over domain

c, Domain size Slab Cylinder Slab Cylinder
Nonlinear R 1-mode 1-mode 1-mode % 1-mode %
parameter  Slab Cyl.  Exact approx [Exact approx Exact approx Diff. [Exact approx  Diff.

0.3 1.821 2724 1 1.008 1 1.025 2.344 2329 0.6 2434 2.393 1.7
0.5 2078  3.039 1 1.010 1 1.035 2,709  2.671 1.4 2812 2.714 3.5
0.7 2.503  3.536 1 1.025 1 1.064 3.336  3.255 24 3462 3.241 6.4
0.9 3511  4.653 1 1.049 1 1.126 4957  4.681 56 5135 4.525 11.9
0.99 5777  7.064 1 1.102 1 1.234 9.108 8.105 11.0  9.426 7.530 20.1

3 A. W. McKinney, General Electric Report GEAP-3450 (1960).
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TasLe III. Two-mode approximation vs exact solution.
Max value of y at domain center Integral of solution over domain
c, Domain size Slab Cylinder Slab Cylinder
Nonlinear R 2-mode 2-mode 2-mode % 2-mode %
parameter  Slab Cyl.  Exact approx Exact approx Exact approx Diff.  Exact approx  Diff.
0.7 2,503  3.536 1 1.000 1 0.989 3336 3.330 0.2 3.462 3.452 0.4
0.9 3511 4.653 1 0.992 1 0.964 4.957 4932 0.5 5.135 5.067 1.3
0.99 5777 1.064 1 0.967 1 0.890 9.108 8935 1.9 9.426 9.005 4.5

(19) and (20) can easily be solved by the Newton-
Raphson iteration method.* 1t is noted that appro-
priate initial guesses for A;, 4,, and A; have been
found to be respectively A;, as given by (18),
—A,/10 (the minus sign because the second mode
must necessarily lead to a flattening of the fundamental
mode distribution), and 4,/100. Convergence of the
Newton-Raphson method was obtained in this way
after only three iterations in all cases studied. Systems
(19) and (20) were programmed for solution by a
small electronic computer, although, if necessary, they
can be solved with a desk calculator,

In Table 11, the results obtained with the two-
mode approximation are given, together with the
exact numerical results. The two-mode approximation
is already in fairly good agreement with the exact
answer, in particular for slab geometry. As expected,
the agreement worsens for the more nonlinear cases,
where the flattening of the distribution becomes more
pronounced.

In Table IV, we give the results obtained from the
three-mode approximation. The agreement is much
improved relative to the two-mode approximation.
This agreement is quite satisfactory even for the
strongest nonlinear case studied, ¢ = 0.99, both in
slab and cylindrical geometries. The excellent accuracy
obtained with three modes for the integral of the
distribution is a further check that the exact distri-
bution is uniformly well approximated over all the
domain, and not only at its center.

5. INHOMOGENEOUS NONLINEAR BOUNDARY-
VALUE PROBLEMS

The method developed in Sec. 3 can be applied
without difficulty to inhomogeneous problems. Con-
sider the simplest case:

Viy + (1 =)y = =/,
¥(8) = 0.

We now expand formally

@0

y(x)=§Am<x>, f(x)=§3v<pv(x), 22)

and follow the same procedure as in Sec. 3. The only
difference in the result of the treatment is that,
instead of a homogeneous nonlinear algebraic system,
such as (12), we obtain an inhomogeneous system
whose homogeneous part is identical to (12).

6. CONCLUSION

An eigenfunction expansion method for the solution
of nonlinear boundary value problems has been de-
veloped. This treatment, in which the nonlinear terms
are taken rigorously into account, is especiaily useful
for the solution of symmetric problems, where a
few-mode approximation is expected to give good
results. In the examples presented, a two-mode
approximation leads already to results in fairly good
agreement with the exact solution.

TaBLE IV. Three-mode approximation vs exact solution.

Max value of y at domain center

Integral of solution over domain

Slab Cylinder Slab Cylinder
c, Domain size
Nonlinear R 3-mode 3-mode 3-mode % 3-mode %
parameter  Slab Cyl.  Exact approx Exact approx [Exact approx Diff. Exact approx  Diff.
0.7 2.503  3.536 1 1.000 1 1.003 3336  3.333 0.1 3.462 3.463 0.0
0.9 3.511  4.653 1 1.003 1 1.011 4957 4951 0.1 5.135 5.123 0.2
0.99 5777 7.064 1 1.007 1 1.045 9.108  9.166 0.6 9.426 9.305 1.3

4 F. B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill Book Company, Inc., New York, 1956), p. 451.
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Variational principles for lower bounds to the energy, or free energy for T > 0°, of many-body systems
are obtained in a form requiring density matrix minimization subject to certain model restrictions.
The latter restrict the domain in which the density matrices can vary, and only utilize the energy—or
free energy—for the model Hamiltonian H,. Increasingly accurate bounds are obtained as the model
system begins to resemble the system of interest, and the behavior of the error as H — H, approaches
zero is shown by two examples based upon the Ising model. Coupling the lower bound principle for the
free energy with the standard Gibbs-Bogoliubov upper bound principle results in bounds on generalized

susceptibility as well.

1. INTRODUCTION

NE of the most standard, yet powerful, techniques
for obtaining the ground state energy Ey(H) fora
system with Hamiltonian H is the Rayleigh-Ritz
principle, in which one varies the wave function
so as to minimize § y*Hy dr. For tiwo-body interactions
in an N-body system,
Y 1
H=73 T3+ >u@)) (L1
1 2%
and ground state wavefunction (anti) symmetric in
the particle coordinates; this is equivalent to

Ey(H) = gm‘i‘? Tr Hf®, (1.2)
f

where
H® =T + TQ) + (N — Du(1,2),  (1.3)
provided the normalized reduced density matrix

e | 12) comes from integrating (or summing)
the N-body density matrix of some real system;

fR12) = f e [Tapazzew
X (123 N)d3---dN (1.4

(A, >0, > 4; =1). If the restriction (1.4) is disre-
garded, then an exact minimization of (1.2) over
four-argument functions /@ will result in a lower
bound to E (H).

If we impose further conditions on f® which are
implied by (1.4),* then the lower bound of (1.2) will
be improved. The question we now ask ourselves is:
Can we in fact go all the way to Ey(H), without use of
a wavefunction, by restricting f® tightly enough?
For this purpose, we may divide the conditions

* Supported in part by Air Force Office of Scientific Research,
Contract AF-AFOSR-945-65, and the U.S. Atomic Energy Com-
mission, Contract AT(30-1)-1480.

1 See C. Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964);
A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963); C. Garrod, Phys.
Fluids 9 1764 (1966); E. Feenberg, J. Math. Phys. 6, 658 (1965).

which f 2 must satisfy into two classes: kinematic and
model-dependent. The distinction is principally psy-
chological. Kinematic conditions will refer to those
such as normalization, positivity, symmetry:

Trf® =1, (1.5)

[ is nonnegative, as an operator

FRUY[12) =221 21)

= 4/®(1'2"|21) for IEBD} statistics,
as well as more sophisticated conditions on eigenvalues,
relations between fV and f®, etc. A model-depend-
ent condition arises from the existence of a model
Hamiltonian Hj,, whose ground state E (H,;) is
known. Then, according to (1.2), any legitimate
[, i.e., one satisfying (1.4), must also satisfy

Colf ™) = Te HES® = S EHy) 2 0. (16)
In fact, it can be shown that if (1.6) holds for all
possible H; (all two-body interaction Hamiltonians),
then /' must have the form (1.4),2 and the minimum
of (1.2) is exact. The second of (1.5) is incidentally a
special model condition, that in which T,,(i) = 0,
(U2 vy [12) = $(1'2))¢*(12) for any two-body
function ¢.

Let us suppose that the kinematic conditions (1.5)
are always imposed. There are then two ways in
which models may be employed. First, one at a time,
in the form
S TeHE

Al

ZEO(H)Zg min  Tr HPf® (1.7)

Outr'?)>o0

with the upper bound presupposing knowledge of
2. Equation (1.7) can now be improved by using

2 C. Garrod and J. K. Percus, Ref. 1.
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the best model of some available class:

g minTr Hf > Eo(H)

Zﬁmax min Tr H®f?  (1.8)

2 M oCutrHzo
Second, the set of models may be used as interpolation
points, each restricting the domain in which f® may
vary. Thus,

E\(H) > N min

Tr H(Z)f(2),
2 (Cxlr'?) >0}

(1.9)
{ } indicating the whole set of restrictions. Equation
(1.9) always gives a higher (or equal) lower bound.

In this paper, we first investigate the fashion in
which Egs. (1.8) and (1.9) yield increasingly accurate
results as the model systems become closer to the
system in question. We then extend the technique to
thermal equilibrium, restricting attention for definite-
ness to Ising models, and to systems involving weak
change sin known situations: application of a weak
magnetic field. The ratio of accuracy achieved to
information required is gratifyingly high.

2. APPROACH TO EXACT SOLUTION

Since the variational principle (1.9) is expressed by
means of linear equalities and inequalities, the error
in E, in the vicinity of the exact answer cannot be a
quadratic function of the parameters being varied, as
in the ordinary upper bound principle. This indeed
is one of the disadvantages of the technique. To gain
some feeling as to how the error varies, we consider
the effect of a single model-dependent restriction in
which the model can be chosen arbitrarily close to the
system being analyzed.

We henceforth restrict our major attention to lattice
gases, defined by the condition that the particles are
confined to the points of a spatial lattice, each of
which can be occupied by at most one particle. We use
the equivalent Ising model terminology, attributing a
“spin” ¢ (= ¢,) = +1 to each lattice site. Consider
then the Q-site Ising model with magnetic field, given
by Q
H = —J<Z>Uz(i)az(j) — B ; Gx(j)’ (21)

ij

o, and o, being the usual Pauli spin matrices and
(ijy denoting a sum over nearest neighbors only?®
Since the interaction is symmetric among nearest
neighbor pairs, the ground state can be chosen as
symmetric as well. Thus, rather than the full lattice
gas pair density matrix, we require only the 4 x 4

3 Some properties of this model are discussed by M. E. Fisher in
J. Math. Phys. 4, 124 (1963).
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nearest-neighbor spin density matrix f (0,0, | 0,0)).
Equations (1.2) and (1.3) become

Ey(H) = % min Tr H®f®, (2.2)
f

H® = —ZJo,(1)o,(2) — Blo,(1) 4+ 0,(2)], (2.3)

where Z is the number of nearest neighbors, and
periodic boundaries are assumed.

To start with, let us carry out (2.2) subject only to
normalization and nonnegativity, denoting the re-
sulting density matrix by f{®. This is just a spin-}
two-particle problem, and so in a spin-1 plus spin-0
representation

—ZJ  —BV2 0 0

g - | —BV2 z —BV2 0 24
0 —B\V2 -=ZJ 0
0 0 0o zJ

the indices referring to configurations (4 +), (+—) +
(—=H)V2, (—==), (+=)—(—=+)/V2. H? js

readily diagonalized, and we then find

O = yTy,, (2.5)
L1 }
w= (20 Ph =i+ b 0).
where
y = ZI(Z3* + 4B,
while

EfH) > —?EO(H‘”) = QB + 122, (26)

a lower bound for all €. Since the ground-state
correlation structure changes with £ [as opposed,
eg., to H= —J3a(i).0(j)— BY 0,(j), J >0, in
which the ground state has each o,(j) = 1 independ-
ently] (2.6) is an equality only for Q = 2.

Now as model system, we choose a replica of the
system in question, but with different parameters:

Q

Hy = _J’<Z>Gz(i)a'z(j) — B ; o (). (2.7

and assume that Ey(H;;) is known. Then the model
restriction (1.6) may be characterized loosely by its
strength. If Eq. (1.6) is already satisfied by f?,

WEAK: 1QTr HS &P > Ef(Hy)), (2.8)

we speak of a weak restriction, and are free to dis-
regard it. In the present case, this condition may be
written as

cos (0 — 0') < Eo(Hyp) / [% Ey(HS) } (2.9)
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where tan 6 = 2B/ZJ, tan 6’ = 2B'/ZJ’, and will
hold only for 6’ sufficiently far from 0. It is for example
satisfied by the field-free model B" = 0 (reducing there
to cos § < 1) which is thereby useless. If (2.8) is not
satisfied, the restriction (1.6) will reduce the domain of
variation of f®, and since only linear equalities and
inequalities are involved, f® must then lie on the
boundary of the domain. Thus, (1.6) must be imposed
as an equality. Introducing the Lagrange parameter
A, we must now solve

Ey(H) > E,
= Zmin TrfO(H® — 2HE) + AE,(H,y),
f(2
where
Q

5 Trf(z)H(Jz} = Ey(H ;).

A further subdivision then occurs, according to
whether the resulting f® is a pure state 7y or not.
If it is, we may speak of a moderate restriction, and
(2.10) becomes

MODERATE: EyH) > E, = %EO(H‘” — AH3)
+ AE(Hy),  (2.11)
2
(W HY lyp) = a Eo(H 3p)s

(2.10)

where

the second condition determining the value of A
In the example of Eqs. (2.3) and (2.7), H® — 1H{)
has the same form as H®, Thus, the results (2.5) and
(2.6) can be used, and yield after brief computation

By = 2 005 (0, — [0 — ODE(H®)
where
Q (2
cos 0,3, = Ey(H ) > E(H3p) |, (212)

using the notation of (2.9), and 0 < 6,; < /2. If
(2.12) were to continue being relevant for H,; in the
vicinity of H, then on setting

Q
0 —0=A, EO(H)/ [5 EO(H‘”)] = cos 0,,

and expanding about H;; — H~0, A~ 0, (2.12)
takes on the form
B _ [<HM —H) _HY - H‘Z’q
Ey(H) (H) (H™®)

+ jtan 6,A] (2.13)
(where expectations are, e.g.,, in the respective

cigenstates of H and H'?) with its characteristic
broken line maximum. (See Fig. 1.)

L. KIJEWSKI AND J. K. PERCUS

Fig. 1. Lower bound to ~
ground state energy using a ~
single model restriction.

As Hj, approaches H, we would expect /' to
approach its correct value as well, and this is certainly
not in the form of a pure state. In fact, if Hy, = H,
we see that (2.10) has the solution 4 = 1, together
with any £ satisfying the second equation—which
of course includes the correct f®. A single model
condition will simply not be enough for a unique
determination of f® at this stage. At any rate, there
must be a point in the shrinking of the domain of

S® as H,; approaches H, where the minimum of (2.10)

occurs at a degenerate f‘¥:

4
f® ='_21°‘z'a'%T’Pi’

4=

(2.14)

Tr« =1, o« nonnegative.

When the restriction is this strong, 2 is fixed simply by
STRONG: E((H® — AH%) (2.15)

and the restriction is satisfied by (2.14) with some «
providing that when v, and y, are chosen to diago-
nalize the matrix (y,| H{? |p,), we have

is degenerate,

2
(il HS lp) > a Eo(H3) > (vl HS lyo). (2.16)
If (2.15) and (2.16) hold, the resulting
Ey = }Q (py H® — AH(Jz[) lya) + AEo(H 3;)

is lower than that for a pure state variation since
[assuming that the analog of (2.8) fails] the weaker
restriction

2
(sl H(lzl) |wa) 2> 5 Eo(H ) — €,

for some e, is being used. Conversely, as soon as the
right-hand side of (2.16) begins to fail, the pure state
minimum takes over.

In the example of Eqs. (2.3) and (2.7), the full set of
eigenvalues is given by +ZJ, +(Z¥?+ 4B%E,
Hence, Ey(H® — AHY) becomes degenerate when
B — AB’ = 0, and we have

Py =(1000), %, =(0010),

—ZJ 0
. H(2) Yy = .
(wzl M W)]) ( 0 —ZJ,)
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But then Eq. (2.16) can never obtain for H,, # H,
and the strong regime does not set in. In general,
when there are several model restrictions, a rather
complicated set of mixed strengths may have to be
investigated.

Finally, we may be more explicit and reduce our
example to the special case of 3 sites; Q = 3, Z = 2.
Then

H = —2J5 + 38J — 2B3,, (2.17)
where & = $(o(1) + 6(2) + o(3)) is the sum of three
spin #’s. The full space decomposes into one spin-§
and two spin-} spaces, only the first of which gives
rise to the lowest eigenvalue. Hence, using the
spin-3 representation of @, we have

—3] —BV3 0 0

H= —BV3 J —2B 0 | e
0 —2B J —BV3
0 0 —BV3 =37

with ground state
Ef(H) =J[—1—b—2(1 — b + b?)}],

b= BlJ. (2.19)
For small b, Eq. (2.6) for Q = 3 yields J[-3 — §b%-- -],
as opposed to the exact J[—3 — }b%- -] above.
Next, employing a model described by 5" = B'[J’ (a
multiplicative factor has no effect upon the model
restriction), Eq. (2.11) or (2.12) yields

E, = —J(l + bb)u 4 b 420 — b + b
1+b
b ’ 7
J\/ZI b,2' (L= b + ) — b — 1
(2.20)

with the typical form of Fig. 1. Numerically, one finds,
e.g., for b = % that

- (35 \/2 -3 -9, b > ¢
Eo = —J[3% + \/2 + ‘3511“1))(§ _ b,), b/ < 3
in the vicinity of the maximum, illustrating the
possible large asymmetries—the nonzero slope of the
dotted reflection plane in Fig. 1.

3. EXTENSION TO STATISTICAL MECHANICS

Presumably, there is no ultimate distinction between
kinematics and dynamics, since the former relates to
possible system configurations, the latter to that which
actually exists. However, under any circumstances, an
artificial separation may prove a useful computational
tool, as it has already proved. The kinematical
quantities are then those common to the set of models
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available, and the remaining explicit dynamics is to
be solved exactly. Precisely this procedure is available
for states in thermal equilibrium, where the configura-
tion common to all models is effectively specified by
the combination of pair density and entropy.

The statistical mechanics of an isothermal (T =
1/kf), isochoric (volume ), petit (particle number N)
ensemble is determined by the Helmholtz free energy

FH) = — 1 In Tr e #H, 3.1

p
which reduces to the ground state Ey(H) as § — co.
Now the density matrix variational principle

Ey(H) = min Tr HT,
where

Tr I' = 1, I’ nonnegative, (3.2)

for H of the form (1.1) can be expressed in terms of the
reduced two-body density matrix f(® alone. But in
(1.2), the corresponding free energy principle

F(H) = min (E — TS)

— min Tr (HI‘ + /—; T'ln P) (33)
involves the highly nonlinear I'In I', and thus, in
terms of density matrices, requires not one but all.
The remedy, as we have indicated, is direct and
trivial but effective. We regard the pair (f®,s)
consisting of a pair density together with a single
scalar, the entropy per particle (in units of Boltzmann’s

constant), as the kinematic object to be varied.
Then Eq. (3.3) becomes

F(H) = min N(% Tr HPf® /—;) (3.4)

if (£, s) is derivable from some N-body I.

Equation (3.4) now poses two problems. First, that
of restricting f® to possible reductions of I'—a
problem which we have considered—and second, that
of determining the maximum entropy allowable for
a given f®. Since the zero-temperature models
relevant to the first problem are limits (as 7 — 0°,
or equivalently, as the scale 4 of the Hamiltonian
AH goes to o) of the finite temperature models
relevant to the second problem, it suffices to consider
models H,, at the common desired temperature.
Suppose then that the free energies {F(H )} of the
class of models {H,,} are known. Any legitimate pair
(f*?, 5) must satisfy, according to Eq. (3.3),

/B < 4 T HES®

- %F(HM) 3.5
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for each Hy,, and hence,

$/f < min [% TrHYF® — L F(HM):l. (3.6)
{H »} N

But (3.4) reads F(H) > min N [$ Tr H@f® — (s5/8)]

when (f'?,s) is varied over a class including those

derivable from an N-body I'. Hence, (3.6) can be used

to eliminate s/, yielding

F(H) > F

= N min max [% Tr(H® — HO)fo 4 L F(HM):l,
f(2) {HM} N

(3.7)

where f® is varied over any domain including I'®-
derivable ones.

As in our ground-state energy discussion, a weaker
result (with a lower lower-bound) is obtained by
using one model at a time, and then finding the
largest F*:

F(H)> F
. 1

= N max mjn [% Te(H® — HSDS® + — F(HIII):}'
(Huy 1 N

3.9)

In either event, in Eq. (3.7) or (3.8), /® may be
restricted by any number of additional model con-
ditions, from all to none. The strictly statistical
effects have already been approximated by the model
upper bound to s, and this approximation is irre-
trievable. Thus, even if f 2 is guaranteed to come from
an N-body I', (3.8) becomes the approximation

FH) 2 F = I{T;Iaf [Eo(H — Hyp) + F(H )]

(3.9)

with, however, the interesting and useful property of
converting the statistical problem to one of finding an
exact ground state. If £ ® is only restricted to two-body
validity, i.e., only positive and normalized, Eq. (3.8)
instead becomes

F(H) > F = max [g E(H® — H®) + F(HM)],

{H )

(3.10)
the weakest possible form. Of course, replacement of
(3.10) by (3.7) generally raises the lower bound; the
form of the result does not simplify in this case.

To gain some estimate of how strong our new
conditions are, we may go to the T— 0° limit. The
weakest result (3.10) becomes

N
Ex(H) > Ey = max [5 E(H® — HY) + Eo(HM)]
M
(3.11)

4 This form may be compared with the standard Bogoliubov
principle as given, e.g., by M. D. Girardeau, J. Chem. Phys. 40,
899 (1964).
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For the intrinsically nonlinear statistical ensemble,
multiplication of H,, by a scalar does yield new
information. Thus, using the model sequence {AH ,/}
at fixed H;,; in (3.11),

Eo(H) > E, = max [% Eo(H® — AHE) + EouHM)],
A
(3.12)

which is equivalent to (1.8) and more convenient
since the classification (2.8, 2.11, 2.15) of model
restrictions does not have to be spelled out.

When (3.9) is analogously reduced to zero tempera-
ture,

E((H) > Eq = max [E(H — AH ;) + Eo(AH 5/)],
* (3.13)

it merely becomes an expression, but a potentially
useful one of the concavity of the minimum eigen-
value. The strongest result (3.7) at T = 0°,

Ey(H) > E,

= N min max l:% Tr(H® — HEf® 4 L Eo(HM):‘
1 (Hy) N

(3.14)

appears weaker than (1.9), since the strongest sub-
sidiary condition is simply added to the quantity to be
minimized—i.e., one subtracts the entropy and not
some function of it—but generalizing H,, to the class
{AH 4}, (1.9) is reproduced.

4. PERTURBATIONAL UPPER AND LOWER
BOUNDS

Under many circumstances, the system under
discussion is close to some standard system in a
quantitative fashion specified by a perturbation
parameter. The standard system may then serve itself
as a ‘“model.” Application of a perturbation can
represent a physical situation, or merely be an artifice.
For example, a computational technique which yields
a poor f‘? will also yield poor expectations (Q) for
other than the energy. It may then be useful to
construct () by applying Q via an appropriate field.
For this purpose, if 4 is a generalized field strength
and Q the corresponding generalized moment, and
if we then define

MQ(l) = <Q>H=Ho—}.Q s 4.1)
we of course have
(D n, = My(0). (4.2)
But the alternative to (4.1),
0 oF
MyA) = ~—~—=FHy— Q)= — 2 .
o(4) 2 (Hy — 2Q) 3 (4.3)
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and the further alternatives to (4.2),

My(0) = lim 1(F, — F))

0<i—>0 A

= lim —(F_,1 —

0<in0 A

Fy), (44)
where these limits coincide, require, as desired, only
the free energy. Thus, if F, is known and we have an
approximation F; < F;, (4.4) gives respective upper
and lower bounds to (Q); if F, > F,, the bounds
are reversed.

When A represents a physical field with moment Q,
Eq. (4.4) is relevant if the system has a permanent
moment. If a permanent moment is only induced by
the removal of field-free degeneracy, then (4.4) yields
instead the two permanent moments M , respectively.
Each is in general bounded from one side, but sym-
metry relations may relate M7 and so allow two-
sided bounds again.

If a permanent moment does not exist, but only an
induced moment, then (@), = 0 and we are inter-
ested in the generalized susceptibility

M o()
21
a2

o

Since (Q)y, =0, the initial susceptibility can be
written as

/‘Q(l) =

F(H, — 1Q). 4.5)

.2
#o(0) = lim = (F(0) — F )X (4.6)
and only a single bound is available. Away from the
origin, (4.5) is required, but the differential 2-depend-
ence can be reduced. To do so, we note that since

F(H, — 7Q) = —  In Tr exp [— f(H, — AQ)],
then b
—Fy(H, — 30) = Tr Q exp [—f(H, — 10)]]
" Tr exp [—A(Ho — 1Q)]
—Fy(H, — 70)

8
= Trﬁ exp [— * (Ho - ZQ)]Q
(8 — 0)(H, — 4Q)10
X exp [— 2ty - lQ)] da|Tr exp [— f(H, — AQ)]

— B(Tr Q exp [—B(H, — 2Q)]/
Tr exp [—pB(H, — 2Q)D°.

X exp [—
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Thus, if
O(«) = exp [—a(Hy — 1Q)]Q exp [«(H, — AQ)],
“.7
we have
—F(Hy — 2Q)

T (B )+ ele ()« w

Parenthetically, we remark that (4.8) establishes the
concavity—nonnegativity of the right-hand side—
of the free energy with respect to a linear parameter.
Now, to avoid complications which are not specifically
germane to the general approach, we will deal
with classical statistical mechanics hereafter. Equation
(4.8) hence reduces to

/‘Q(l) = <Q2>H0—}.Q - (<Q>HO—AQ)2
= min {(Q — ¥))a -0 (4.9)
7
just another moment problem, with, e.g., all the

advantages thereof at 2 = 0.

The 4 = 0 bounds are not generally available at
finite A for the moment and susceptibility, although
of course they are for the corresponding finite incre-
ment quantities:

AFg(3) = i(F(Ho) — F(H, — Q)

APFy(2) = = QF(Hy) — F(H, — Q) — F(Hqy + 70)).
7

(4.10)
Further from the nonnegativity of (4.8),

F(0) = F(3) — AF'(A) + &; F'(63)
for
0<0<L A,
so that
F(0) < F(2) — AF'(4),
or
_p(a) > HO = FO) - F@) (4.11)

yielding a weak bound if F(4) is replaced by an upper
bound F(A).

Let us now investigate the quality of the bounds on
free energy available in the perturbation domain. We
define

H=H,+A, (4.12)

regarding H, as a model, and A as a first-order
infinitesimal. Then a direct expansion of the free
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energy F(H) = —f7 In Tr exp (—pH) for (4.12) yields
P = Fai) + 8 = £qa - By
+@-apy o @y

where A = (A) and all expectations are at H = H,.
This is to be compared with the upper bound given by
(3.3) for I'(H,) = exp (—fBH,)/Trexp (—fH,)as varia-
tional density,

F(H) < F(Hy)) + A (4.14)
Equation (4.14) is of course exact to first order. Under
many circumstances, however, model information is
trivially available when some model parameter varies
as well, notably the temperature—or equivalently the
energy scale—in the present case. Thus,

F(H) < min [F(yHo) + (A),n, — (v — D(Ho)yz,);
the minimum occurring at
(AHy) — (AXHy) = (y — D(HG) — (Ho)"),
so that
(HOy, 1, — (Hoyir(AHo), g1,

F(H) < F(yH,) +
’ (HY, 5, — (Holy,

>

(4.15)
where
y—1
= (AHQ) 57, — (D) (HY g CHD g, — (H ).
If equation (4.15) is then carried through second order
(most simply, before minimization) we obtain
F(H) < F(Hy) + A
A 7 V2

_ é((A — &) (A - Az)(HO - Hg))2
2 (A — BY)(Hy — A
with all expectations at H,. Equation (4.16) coincides
with (4.13) where H, and A are linearly correlated,
i.e., if A is interpolated as a linear function of H,.

Proceeding to lower bounds, we have seen that the
problem divides itself into two parts, first of estimating
the entropy associated with a given f‘®, and then that
of not badly underestimating resulting free energy.
As companionpiece to (4.13), we note, using

+ - (4.16)

oF
S = p—=
0
and 5 d
53 <A> = —<(Ho - ﬁo)(A - /i-»
that
S(H) — S(Ho) = —B%(Hy — H)(A — B))
2
-3 (A — A%

+ f;—«Ho — H)A AP 4+, (417)
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while from
2 OF
@ __ <
f2 - NéA(z) ?
applying
— )
Te(HY - A 5 »

N

5 I HP(f® = f§) = ~B(H, — A)A ~ b))

+ L - mpa -39 @
To first order,
P, 2) =1, 2)
— BUA — AYo(1 — 1)0(2 — 2')), (4.19)
allowing A — A to be solved, and then

sty = L s(Hy) + 3 Tr BP(® — 1)
B p

B
2N
The single-model condition (3.5) reads in the present
case

(A =RAP + -+, (4.20)

és(H) <ITr(HY — A + /13s<Ho), @.21)

again accurate to first order, thus placing the onus
of the approximation to this order totally upon the
further minimization over f‘¥. Accuracy to second
order is achieved only if A turns out to be a constant.

Let us see what happens when the entropy and f
minimizing approximations are combined. Now for
a single model, Eq. (3.9) [or the weaker (3.10)] is
valid, yielding in the present case

F(H) > min A + F(H,)

> gmin A® + F(H,), (4.22)
which is useless unless A is nonnegative, and then
quite poor. The corresponding f® is composed of
d functions at the minimum of A, concomitant with
the triviality of the classical ground state, and the
entropy is the crude first order

52 1—; Tr HPf® — F(H,),

p
illustrating the drawbacks associated with the advan-
tage of not requiring f{ for our lower-bound
formulation.

For a discrete (i.e., spin) classical space, the ¢
function nature of f® is not onerous. Let us see

(4.23)
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what improvement in (4.22) and (4.23) occurs when
the model set yH, is employed. Equation (3.7) now
demands the maximum of F(yH,) — Ny Tr H?f®;
this occurs at (Ho),gr, = N Tr H{®f®, hence
yielding
)
B

(Hy),, = 3N Tr H® f®,

= y(Ho)yr, — F(yH,), (4.24)

where

a rather obvious type of self-consistent yH, to pro-
duce /&,

5. SCALED MODEL RESTRICTIONS FOR THE
ONE-DIMENSIONAL ISING MODEL WITH
EXTERNAL FIELD

We again consider in detail an illustrative example,
now of lower bounds for statistical states. It is that of
the paramagnetic (¢ > 0) one-dimensional Ising
model with external field B, and periodic boundary
conditions;

N N
H=—€3 s5.,,— B3 s, (GR))
1 1

where s, = +1 and sy,; = 5,. This is equivalent to a
lattice gas in a grand ensemble with density unequal
to one half maximum. Insofar as the energy is con-
cerned, one needs only the following:

f:s = <6sk.s>’

fss’ = <6sk.sask+l,s’>’ (5.2)
the nearest-neighbor distributions—a 2 vector and a
2 X 2 matrix, respectively. Indeed, since the only
independent functions of two spins s, s"are 1, s, s’ 557,
the moments

P1= <z i) = N(s) = fo,
Pz = <Z SySra1) = N{8iSp11) = Nf,

suffice. If we stick to models which demand no more
than the simple (5.2) or (5.3), i.e., one-dimensional
nearest-neighbor forces, we are in fact restricted to
model Hamiltonians of the form (5.1) but with
different parameters, €, B—a practical procedure only
under special conditions.

Before concentrating on the equilibrium free energy
of (5.1) and comparing with approximations, let us
examine the functional dependence of S on p, and
pe—the crux of our approximations—for this too is
exactly obtainable in our case. A convenient way
to obtain this dependence in the thermodynamic
limit N — oo is to observe that since SFis a functional

(5.3)
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+
F1G. 2. Ising model configuration
with periodic boundary. - -
+ ¥
i
|
only of BH, then from (5.1),
oF 0
S=p—=p8—pF — BF
B 2 B P pF — B
0 0
= —pF 4+ e— fF 4+ B— fF.
P+ o Pr+B3gh
Hence,
S oF oF
——-=F—¢——B— 5.4
8 ‘2 o8 4)
But also from (5.1) and (5.3),
oF oF
=L L, =_7 5.5
P2 3e P1 3B (5.5)

Thus, —s/B as a function of p,, p, is the Legendre
transform of F as a function of € and B, and in the
thermodynamic limit is identical with the p,, p,
ensemble potential;

S = ln(Z}ﬁ(E Si> P1) 0(2, SiSer1s P2 (5.6)
all at fixed N. The free energy may of course be
recovered as

F(e, B) = — élnpzp exp [S(p1 po) + BpuB + Bpecl.
(5.7)

Let us evaluate (5.6). Denoting the number of spins
up and down by a_, the number of spin flips from
—1 to 1 in the sequence {s;} by b (= flip number
from 1 to —1), we have

a,=iN1 +f), a.=iN1-f),
b =iN(1 —f). (5.8)
(See Fig. 2.)
But the number of configurations at fixed a,,a_, b
is the product of the number of ways that the b + 1’s
which occur immediately after a flip can be chosen
from the a, 4 1’s present, by the corresponding
number for —1’s. In other words,

“= ()0

(5.9)
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and as N > o0, we obtain from (5.8)

S=I§V=1n2 + A +H)In(1 4+ 1)

+(A - -f)—0=f)In(l—f)]
—He+ 20+ DIn(fe+ 2+ 1)
+(f:—2fi + DIn[f — 2fi + D],

to which any approximation must be compared.

Now the form in which we pose our test problem is
this: Suppose that the field-free Ising model has been
solved and we want to find the initial as well as finite
effect of an added field. We thus have available the
model set

(5.10)

N
Hy = _Mg SkSte+1 (5.11)

on which to base a restricted variational principle.

Clearly,
M

z e‘ﬂHM — z H epﬂlskskﬁ-l =Tr (e_ﬁ;” eﬂJI

e—ﬂ M )N
>

and the maximum eigenvalue of the 2 X 2 matrix is
Amax = 2 cosh fM, so that

FM,0) = — %] In (2 cosh fM). (5.12)

Our aim is to reproduce F(H), which can be evaluated
in precisely the same way, yielding

F(e, B) = — —II;-J In (&€ cosh B
+ (¥ + ¢¥*sinh® B))
= —Ne — %ln (cosh gB
+ (e7*< + sinh® B)Y).  (5.13)

We first consider the very weakest forms Eqgs. (3.9)
and (3.10), which become

F(H) > max (Ey(e — M, B) + F(M, 0))
M
N o _
_>_m]3.x(2 Ey'(e M,B)+F(M,0)). (5.14)

Now by checking each of the four cases, we see that
—ess’ — 3B(s + s') has a minimum of
— e+ $1Bl| - }1BI.
It follows that
N
E(e, B) =~ E(e, B) = —N |e + 1 1B | — 4N |BI,

(5.15)
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Eq. (3.10), here, being no weaker than Eq. (3.9); we
have

F(H) > —N min (lﬁ In 2 cosh M
M

+le+ 1181 = M) — 4N 1B, (516
yielding on evaluation

F(H) > —Ne — % In (18! + %) (5.17)

at the optimum model M = ¢ + { |B|. For the cor-
responding entropy approximation, (3.6) now reads

s
p
yielding on evaluation
s<In2— 3+ +£)
+ A =fhhd-FH1 (519

Let us proceed without a pause to the stronger
principle (3.7), or in the present case,

< — max [(1/N)F(M, 0) + Mfy], (5.18)
M

F(H) > N min max I:(M — €)fy — Bf;

fufa M

- }ﬂ-ln (2 cosh ,BM)], (5.20)
essentially a transcription of (5.18). Thus,

F) > Y min[= 12 + 31 + £ In (1 + £

f1.72
+ 3t = f) In(1 — f,) — Befy — BBf\].

The minimization of (5.21) now does depend on the
allowed domain of f; and f;. Pure two-body restric-
tions result from the positivity and normalization of

feos 0f (5.2):
Jir 20, 20, fio=f,2>0,

(5.21)

S+ fiot =1 (5.22)
Thus,
h= i =
fi=2Afe +f )1 (5.23)
must satisfy the conditions
A< +/) <1, (5.24)

which applied to (5.21), result in
F(H) > F = %min [—In2 + }(1 + f) In (1 + ;)
fa

+ 30— f)In(1 = fo) — Befa — 36 Bl (1 + f)]
1
= N —¢ — = 1n (1B 4. o—26¢
N( 5 n ( + e ))
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at
f: = tanh (e + £ |B]),
fi=131+f)sgn B
= }exp [B(e + § |Bl) sech (e + % |B]), (5.25)

the lower bound F (= F(e + }|B|,0) — (N/2) |B])
being precisely as in (5.17); the unrestricted (5.17) is
right on the boundary of the restriction (5.24). We
may also compare with the correct f; and f;, deter-
mined by (5.5) and (5.13):

1 oF

fo= =50 = (€7 o+ sink? pB)* sinh 8B,

fo=— ]—lva‘,)—F = coth 28e — (¢™¥< + sinh? gB)~*

€

- cosh fBe~%<csch 2e. (5.26)

Finally, we ask how (5.24) is altered by a full N-
body restriction. We want to replace (5.24) by the
allowed domain of the full N-body reduced f;, given
Jf1. Clearly the stationary values of f;, given f;, are
obtained from those of f; 4+ Af;, corresponding to the
f — oo limit of the statistical problem for

H= £ 581+ 4 2 50)
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But the solution of this problem is (5.26). Solving
(5.26), we have

tanh fB = £,[(1 — fHe” + 2173,
so that, setting X = e — 1 > —1,

(5.27)

= 2_2 — 2y
f2—1+X X[l+(1 XE (5.28)

The domain of f, given by (5.28) is (by virtue of

I/il 1) again
—1+2|A <<, (5.29)

identical with (5.24). Hence, the result (5.17) is not

altered on applying the full strength of N-body

realizability. The complete approximation in this

example is that of too weakly bounding the entropy.

This is neither surprising nor especially deplorable,

since an expansion of Eq. (5.10) about the model

condition f; = 0 yields

s=1In2—3[(1 +f) In(1 + 1)

11— f,

+(0—foyln(l —-fi)] — -—

(1 —f)In(1 ~£)] 1A

a second-order correction to (5.19) (and since
1 —fo/l + f; =e% for the model, particularly
small at low temperature).

fieee, (530)
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The explicit Wigner coefficients are determined for the direct product of regular representations,
(N)® (N)=2(N)+ -+, of SU(m), where N = n* — 1, Triple products C,,C;Cn = aF; + fD;, and
higher-order products, are calculated, where C; may be F, or D;, the N X N Hermitian matrices of the
regular representation, and m is summed. The coefficients «, § are shown to be 6-j symbols, and
higher-order products yield the explicit 9-j, 12-f, symbols. A theorem concerning (3p)-/ coefficients

is proved.

I. INTRODUCTION

HE ostensible purpose of this paper is to explicitly

determine the 3, 6, 9, 12-j coefficients of SU(n) for
the special case when the regular representation occurs
in the direct product of regular representations,
(N)® (N)=2(N)+ -+, where N =n?— . This,
it must be admitted, was not the initial motivation for
the work.

The real purpose was to consider products of
the 8 x 8 Hermitian matrices C,, C,C,C, or
c,.C,CC,C,, where m, n are summed from 1 to 8,
and C, is F, or D,, the Gell-Mann matrices.! In a
special current algebra model,* (C,);, represented the
unrenormalized lepton-current-baryon vertex, and
the various 3rd, 5th, and higher-order products
represented exchange meson corrections to this
vertex. As an example, the above two products
are represented graphically in Fig. 1. The question
posed was the following. Say the original vertex is
(D) F-type. Under what conditions would the various
corrections leave an (D) F-type vertex? In general,
then, C,,C,C,, = oF; + 8D,, and the original ques-
tion reduced to the calculation of &, 8. However, it
became clear, quite shortly, that « and 8 were 6-f
coefficients which relate the manner in which three
octet representations may be coupled to yield another
octet representation. Higher-order products provided
the 9, 12-j coefficients. The methods derived toevaluate
such products were quite general and could, indeed,
be applied to matrices of the regular representation of
SU(n). This, then, provided a way to evaluate the
6, 9, 12-j coefficients for SU(n), the results of this

paper.

t Supported by the U.S. Air Force under contract AFOSR
500-66.

t Present address: Congregation B’nai Sholom, Blountville,
Tenn.

! M. Gell-Mann, California Institute of Technology, Pasedena,
California, Report CTSL-20 (1961).

2 This line of approach was suggested by Professor J. Sucher and
will be reported elsewhere.

CmCi Cr®

CmCnCiCrnCh:

THE INCOMING, OUTGOING LINES ARE BARYONS, THE WAVY
LINES, A LEPTON CURRENT, AND THE DASHED LINES,
EXCHANGED VIRTUAL MESONS.

FiG. 1. Vertex corrections.

This paper exploits an intimate relation between the
fundamental and regular representations of the Lie
algebra, namely that the n x n matrices serve as the
carrier space of the regular representation; in fact,
define the coupling coefficients. This relation has been
employed by Gell-Mann! and Lee? for SU(3) and
noted by Bargmann,* Behrends et al.,> and Bieden-
harn,®7 among others. In Sec. II, the n X # Hermitian
matrices A,, i=1, -+, N, the matrices of the

3 B. W. Lee, International Center for Theoretical Physics Report
(1965).

4V, Bargmann, Ann. Math. 48, 568 (1947).

5 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B, W. Lee, Rev.
Mod. Phys. 34, 1 (1962).

¢ L. C. Biedenharn, J. Math. Phys. 4, 436 (1963).

? G. E. Baird and L. C. Biedenharn, J. Math. Phys. 6, 1847 (1965).
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infinitesimal generators of SU(n), are defined, and
the Gell-Mann matrices F;, D;, constructed. It is
then possible, by means of transformation vectors
e®, to transform from the 4; to a non-Hermitian
“spherical” basis L', 4 =1,---, N, and define the
states u in terms of the weights. This transformation
allows us to express the Wigner coefficients in terms
of linear combinations of the F;, D,, matrices, as
shown in Sec. III. The appropriate phase convention
for the Wigner coefficients is introduced through the
spherical vectors. The explicit Wigner coefficients
then have the conventional orthogonality, symmetry,
properties, and are equal to de Swart’s® for the case
of SU(3). In Sec. IV, the products of matrices
C,.C.C,, = oF, + BD, are considered, and the «, §
coefficients are shown to be 6-f symbols. Higher-order
products are 9, 12-j symbols. A general theorem
concerning products of C, is proven here: if the prod-
uct contains an odd number of F’s, then § = 0; if the
product contains an odd number of D’s, then « = 0.
The explicit calculation of the coefficients «, § for the
various products is relegated to Appendix A where
the calculation is self-contained (and simply con-
nected). The results are listed in three tables. The
matter of phase convention for the Wigner coefficients
is discussed in Appendix B.

II. INFINITESIMAL MATRICES, WEIGHTS
A. Hermitian Basis

Let the n X nmatrices 4,,i=1,-+,N=n%— 1,
be the matrices of the infinitesimal generators of
SU(n). The matrices A; are Hermitian and traceless.
Since the matrices 4; and 1 span the space of n X n
Hermitian matrices, the product 4;4; may be expressed
as

Ad; = adyl + ek, )
where c¢;; = d; + ifin, and f, d are real. If we
combine Eq. (1) and the Hermitian conjugate of Eq.
(1), assuming A, constructed such that a is real, we
have the relations

(A5 4] = 2if iy, (2a)
{A‘i’ 1,} == 2a6,51 + Zdijklk, (2b)
Tr (A;4;) = nad,, (2¢)

where [ ]is the commutator, { } is the anticommuta-
tor. Equation (2a) shows that the A; are a basis of the
Lie algebra. The matrices 4, may be normalized so
that a, in Eq. (2¢), is independent of the indices 7, j
and @ = 2/n.® Then,

87J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
9 M. Gell-Mann (Ref. 1) chooses a = § for SU(3), as a generali-
zation of the normalization for the Pauli spin matrices, Tr (r;7;) =

45
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Tr (A,4;) = 25;. (2¢)
In Appendix A, however, a will be left arbitrary
since the specific realization is not important for the
calculation of matrix products. From Egs. (2a,b),
Sfin(diz) is antisymmetric (symmetric) under the
interchange 7, j. However, using Eq. (2c), we have that

Tr ([4:, A14) = Qan)ify, (3a)
Tr ({2, A34) = (2an) dy. (3b)

From these equations and the fact that 4, is Hermitian,
it may be shown that f;,(d,;) is antisymmetric
(symmetric) under the exchange of any two indices.
Given the specific basis 4,, the coefficients f, d, are
completely determined by Egs. (3).

In analogy to the SU(3) case,! let the Gell-Mann
matrices F;, D;,i=1,-+, N, be defined

(Fi)ﬂc = _lfi.‘ik’ D)y = diik' @

Due to the symmetry of the f, d coefficients, and the
fact that F, is pure imaginary, D, real, the matrices
F;, D, are Hermitian. The matrices are also traceless
(see Appendix A).

If a set of operators {T;} satisfy the commutation
relations

[Fi’ Tj] = ifi:}ka’ (5)

the set {T;} are vector operators of SU(n).*'® From
the two Jacobi identities, Eqs. (Al), (A3) of the
Appendix, the relations follow

[Fi’ Fa] = lfi!kFlcs
[Fi, D;] = lfiika'

(6a)
(6b)

Hence, the Gell-Mann matrices, Eq. (4), are vectors
of SU(n).

The coefficients f,;;,, d;;; also serve as the coupling
coefficients of SU(n).!* Say that two sets of vectors,
(W), (1), satisfy Eq. (5). The direct product set
{T{VT'?} may be reduced with the coefficients f, d,

TP = bifpnT TR, T =bydy, TTE, (7)

where the constants b; are independent of jkm. The
sets, {T ¥}, {T(¥}, are easily shown to satisfy Eq.
(5) [using Egs. (6)], and, hence, also constitute vector
operators.

The set of coupling coefficients f;;;, d;;, satisfy the

10 A relation similar to this is derived by A. P. Stone, Proc. Cam-
bridge Phil. Soc. 57, 460 (1961) for the general semi-simple Lie
group.

11 This is shown by Biedenharn (Ref. 6) for a specific realization of
the regular representation. The equivalent result, that the coefficients
d;;; may be used to construct the Casimir invariants of SU(n), was
proved by A. Klein, J. Math. Phys. 4, 1283 (1963).
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orthogonality relations,

Z finine = Tt (FxFy) = a0 (3a)
z dis i = Tt (DyDy) = a0y (8b)
k¥

(8¢)

Z Jim ige = —iTr (F D) =0,
13

as shown in Appendix A [see Eq. (All)], where
a; = ta(N + 1), a; = }a(N = 3).

A specific realization of the n x n matrices 4;,
i=1, -+, N, may be given, in analogy to the SU(2)
Pauli spin matrices, and the SU(3) matrices.! Let
e,;;, be the matrix with 1 in the ijth position, and zero
elsewhere. Then,

(e(ij))uv = 61u 6jv . (9)

Let o = (ij) be the ordered pairs i < j, where i,j =
1,--+,n, and let —x« = (ji). Then, for the nondiag-
onal A, matrices,'® we define

A =, + e, = ey + ey, (10a)
lf’ = —i(e, — e_,) = —iley; — eyp). (10b)
The matrices AV, A?, a=1,---,4m, [m=

n(n — 1)}, satisfy Eq. (2¢”). For the diagonal matrices,3
let

(11

(Bk)mn = d(mk)amnak

where
dW=1, m=1,-
=—k, m=k+1;
=0, m=k+2,--,n.

This set of diagonal matrices!* A,,., = h,, satisfies
the orthonormality conditions, Eq. (2¢’), if the
normalization constant is taken

@, = 2[k(k + D). (12)

The explicit set of Hermitian matrices!® 1,, i =
1,---, N, and Egs. (10) and (11), uniquely define
the matrices F;, D;, by Eq. (3).

B. Spherical Basis

The conventional Wigner coefficients are defined
in terms of a non-Hermitian “spherical” basis. In
SU(2), the Hermitian set I,, i = 1, 2, 3, are vectors

12 C, Itzykson and M. Nauenberg, Rev. Mod. Phys. 38, 95 (1966).

13 These matrices were used by G. E. Baird and L. C. Biedenharn,
J. Math. Phys. 4, 1449 (1963), to show that it is possible to find
commuting subgroups U(1), SU(r — 1), of SU(n).

4 The matrices (or operators) are denoted by le,,, and the eigen-
values, h; .

18 Apart from normalization and phase, this is the same set of
matrices employed by A. Pais, Rev. Mod. Phys. 38, 215 (1966).
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of the regular representation satisfying the commuta-
tion relations, [/;, I;] = ie;;l,, similar to Eq. (6a).
The spherical set [with phase (—1)"] is I, =
(=W + il), L. = (V2)(Iy + il), I, = I, . The
set of operators I, I,, I_, may also be associated
with the set of states, m = +1, —0, —1, of the regular
representation.’®* This transformation, from the
Hermitian basis to the spherical basis, and the
labeling of states of the regular representation, may
be carried out for SU(n), as a generalization of the
SUQ2), SUQ3) cases.

Let the spherical basis L'®, « =1,---, N, be
expressed as a linear combination of the Hermitian

basis A; by means of the transformation vectors
e("‘),"
1

(=1)%

L = f(—1)%4, = 2 AP+ i), (132)

[ = e, = ﬁ (A" = i2D), a=1,"--,m2,
(13b)
[¥=h a=m+i=m+1,-+,N, (13¢)

where Q, is the generalized “charge,” an integer (see
Appendix B),

n—1

0, =2 hlk (13d)

and £, are the weights of the « = (jj) state (see Sec.
IIC).*® The transformation vectors have the built-in

phase convention
()* = (=D, (14)

a generalization of the SU(3) case,® and the orthog-
onality properties,

< (@) (p) L w
2.l = Oup» 2 &Vt =0y, (15a,b)
i=1 a=—m/2
S _(a) (B) ¥ @
S ee? =68, _y(—1)%%, €7 = 0,4,
=1 a=—m/2
(15¢,d)
where
. —1 i=1,---,m2associated with A{¥,
1: —

+1 i=1,--,m/2associated with A{".

18 The association of operators and states for SU(n) has been
extensively discussed by Biedenharn (Ref. 6), and G. E. Baird and
L. C. Biedenharn (Ref. 13) and J. Math. Phys. 5, 1723, 1730 (1964).

17 The transformation from a Hermitian to a spherical SU(3)
basis is given by B. W. Lee (Ref. 3).

18 As shown in Appendix B, Eq. (13d) may be employed to define
a consistent phase convention for the SU(n) Wigner coefficients, as a
generalization of the convention of de Swart (Ref. 8) and L. C.
Biedenharn, Phys. Letters 3, 69 (1962) [but not Biedenharn (Ref. 16)].
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The spherical basis L may be expressed in terms of
the matrices e(,;, Eq. (9),

L9 = 2(=1)%e, = \/2—1)%e,,
[ = 2e,=2ey-. (16)

In this form, the basis L® satisfies the commutation
relations

L2, [P = J2 I"(=1) o= (k]), B = (Im),

y = (km), (17a)
= —2LM(=1) a=(kI), B =(mk),
y = (ml), (17b)

=0, otherwise (x# —f),
[Bk» L(a)] — ak(dt(k) — dgk))L(“) = d(k)L(a), (170)
[A;, B =0, (17d)
[L?, L] = (=)%Y « W, (17¢)
k

where a, is the normalization, Eq. (12), d*’ are the
diagonal elements, Eq. (11), and 6 is Q,, @, and
Q,, for each «, B, y positive, respectively.

The basis L'*) also satisfies the anticommutation
relations

(L9, 1) = 2 I7(=1), «=(kl), = (m),
y = (km) (18a)

a=(kD), B=(mk),
y = (ml) (18b)

=0, otherwise, (x 7% —f),

{ﬁkr L(a)} — ak(d:k) + d}k))L(“) = ﬂ(k)L(a)’
{ﬁi, ﬁj} = 4/” 1 + 2 Z dz!k_l)ﬁkak’
k

{h;, by =2a,h; i<, (18¢)

{L, L} = (4/m)(=1)% - 1 + (=1)% 3 g%,
Eoo(186)

(18¢)
(18d)

C. Weights

The group SU(n) may be decomposed by the chain
SU@m) > U(1) ® SU(@n — 1). If we renormalize the
diagonal operators

1
ﬁk = E {ean + - + ewr — keginin}, (192)

the decomposition may be written in terms of the
eigenvalues h,,_;:

h,,=1/n, SU@n—-1)FR.
SUmF.R.:.{h,_1=1n—1=—(n—1n,
SU(n — 1) singlet,

(19b)
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where F.R. is the fundamental representation. The
SU(n — 1) F.R. may be similarly decomposed. This
is a decomposition in the weights of the subgroup
chain® SU(n) > SU(n — 1) @ - - - > SU(2); the F.R.
of SU(n) contains the F.R. of SU(n — 1), and so on.

The direct product (n) ® (n)*, where * denotes the
conjugate representation, may be reduced by simple
Young tableau techniques,®

Mo m* =@ —1)+ 1.

In terms of the subgroup decomposition, the SU(n)
regular representation (written R.R.) in terms of the
weights h,_; and the subgroup SU(n — 1), is

h

h
SUMR.R.: { "

(20a)

1=1,8U@m - 1)F.R.
1=0,8U(@#n — 1)R.R.

+ SU(n — 1) singlet
b,y = —1, SU(n — 1) conjugate F.R.
(20b)

The R.R. of SU(@n —1), SUn~-2), -+,SUQ),
may be similarly decomposed.

The states of the SU(n) R.R. may be associated
with the matrices e;, in a manner similar to the
association of the SU(2), m = +1, —1, 0 states with
the matrices e ,,), €q1)s €11)» —€ss - 1he matrices
eim» i=1,""+,n—1, associated with the states
h,1 =1, SU@n — 1) F.R,, are given in Table I. The
matrices e,; , associated with the states 4, ; = —1,
SU(n — 1) conjugate F.R., follow similarly; the
weights are the negative of those in Table I. The
matrices e, i,j=1,""",n— 1, are associated
with the h,_, = 0, SU(n — 1) R.R. The matrix e, ,
or the traceless A, ;, is associated with the state
h,_ . =0, SU(n — 1) singlet. There are, in all, n — 1
singlet states associated with the center of the Cartan
algebra.?® This decomposition procedure may now be
repeated for the SU(rn — 1) regular representation.
For example, the matrices e(;,_y), i= 1, ,n— 2,
are associated with the states 4, , =1, SU(n — 2)
F.R., and are given by a table similar to Table I. This
reduction of the SU(n) R.R. is simply an application
of the Weyl branching law®! to SU(n).

n—

III. WIGNER COEFFICIENTS
A. Definition

Employing the transformation vectors €/, Eq.
(1) may be transformed to the spherical basis L™,

1% H. Harari, J. Math. Phys. 7, 283 (1966).

20 G, Racah, Princeton lecture notes (1951).

1 H, Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc., 1932), p. 390.
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The commutation, anticommutation relations become

[L?, LP) = 2bf (a, B, )L, (21a)
(L%, P} =248, _4(—1)%1 + 2cd(x, 8, )L, (21b)
where
bf(a, B, 7) = ifigeiei” )%, (222)
cd(a ﬂ )’) = zake(a) (ﬂ) (y)* (22b)

and the b, ¢ are normalization coefficients, independent
of a, 8, y. From Eqgs. (22), we see that the coefficients
S, B, y), d(e, B, y) may be given as linear combina-
tions of the f,;., d,;, respectively, using the trans-
formation vectors €. By Eqs. (21), we see that the
coefficients f(«, 8, y), d(x, B,y), are also given
explicitly by Eqs. (17) and (18). Note that f, d are real.

The f, d coefficients in the spherical basis are pre-
cisely the Wigner coefficients coupling (N) ® (N) =
2(N)+ -~ According to Stone,** the matrix
elements of the spherical vectors, taken between
states of the regular representation, may be expressed
in terms of the structure constants of the algebra,

DI L2 1) = [¢P]c)el, (23)
(B, y not summed),

where ¢}, = 2bf(«, f8, y) are the structure constants.
Equation (23) follows from the fact that the infinitesi-
mal operators ‘are also tensor operators. Since
Hermitian, the matrix elements satisfy the relation

] L= |B)(—1)% = (B] L? |y)*. (24)
We then have the result
(Bl = g, —,/8p-p(— D%, (25)

where g,, is the metric g,, = c”ac‘:ﬂ

and (15), we may evaluate the metric
gy = (—I)Q#(S —v(2b)2-

Since (—1)%*9s~¢y = +1, from the definition Eq.
(13d) and the fact that «, 8, ¥ satlsfy the triangle
relations required by the commutation relations, Eq.
(17), we see that {c(B)|® = |c(y)|?, independent of
B, y. The ratio ¢'®/c® is simply a phase which may be
appropriately chosen. Choose the phase such that

Using Eqs. (8)

I LBy = (—1)*2bf (=, B, ¥), (26a)
where
(—1)° = {+1 if o,B,y==41,--,£m/2 (26b)
—1 if «,fory=m+1,---,N.

This is the requirement that

(’)’| L(”) |ﬂ> 2 0’ J = 2’ R (2 (27)
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an immediate generalization of the Condon-Shortley??
phase convention for SU(2) and the Biedenharn?®
phase convention for SU(3). The fact that Eq. (27)
follows from the definitions Eq. (26) and (13d) is
shown in Appendix B.

According to the Wigner-Eckart theorem,

(@) _ N N N
AL =3 (5 5 5 )IND,. 09

where the first factor in the sum is the Wigner coefli-
cient and the second factor is the reduced matrix
element, independent of the row labels «, 8, y. The
conventional choice? is to take (|| N| ), = 0. Then the
Wigner coefficient is given directly by the matrix
element of the generators,

F

Using Eqgs. (15) and (8), we have

ywm4mmw<m(m

g f(o B, V) f (% B, ') = 8,y (30a)
gd(a, B, vy d(a, B,y") = 6,,, (30b)
;ﬁ f(e B, y)d(x, B, y) =0, (30c)
providing the normalizations b, ¢ are chosen?*
QbR =a,, () =a,. 3D

Since the coefficient f(«, 8, y) is orthogonal and
normalized to unity, we see from Eq. (29) that
Sf(&, B, y) is exactly the Wigner coefficient (apart from
the phase factor which is required because of our
phase convention). The second set of Wigner coeffi-
cients is determined by the fact that it must be
orthogonal to the first set and normalized to unity.
Up to an over-all phase, this is sufficient to completely
determine this coefficient.

Equations (17), (18) and (21), and the phase
conventions, completely determine the coefficients
S, B,v), d(a, 8, ). The particular association of the
ordered pairs « = (jj) with the physical states is
determined by Eq. (20c) and Table I.

22E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England, 1935).

23 This choice is made by de Swart (Ref. 8), J. G. Kuriyan, D.
Lurie, and A. J. Macfarlane, J. Math. Phys. 6, 722 (1965), and
K. T. Hecht, Nucl. Phys. 62, 1 (1965).

24 This agrees with the factors (2b)% =
Lee (Ref. 3) for SU(3).

25 For SU(3), this is explicitly demonstrated by Kuriyan et al.
(Ref. 23) and noted by Hecht (Ref. 13).

3, and (2¢)? = %, given by
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B. Symmetry Relations
1. Exchange States 1, 2. The relations
S, B, 9) = —f(B, %, 7),
d(a, p,y) = d(B, @, ),
follow directly from Eqgs. (22).

(32)

2. Exhange States 1, 3.
bf (o, B, ) = i ®eP (= 1)l S,
using Eq. (14),
= —ie L (— 1)z
exchanging i, k,
(a) (ﬂ) (— v)f“( 1)Q «
= —(—1)"‘“+Q‘yf(a, B, v
using Eq. (14).
Hence, under the exchange of states 1, 3,
f(—)’, ﬂs —d) = —(—I)Qﬂf(as ﬁ, }’),

d(—y, /3’ —d) = (_I)Qﬂ d(O(, /3’ 7’),
since (—1)@-a+Q-y = (—1)98.

bf(_ya ﬁ, -—O{)

(33)

3. Complex Conjugation.

bf(a, B, y) = bf*(«, B, y), because fis real,
= —ieia)*fg'ﬂ)‘sl(cy)fuk

= (=1)(— I)Q“+Qﬁ—07€i_a)€§_ﬂ)(fz(c—v))*fwk
using Eq. (14).

f(_“’ -8, _7) = _f(a’ ﬂ’ ¥)s
d(—a, —f, —y) = d(a, B, »),
since (—1)9et¥s~¢y = +1.

Hence,

(34)

IV. PRODUCTS OF GELL-MANN MATRICES
Notation: Let

f (“’ /3 ’ 7) r=1
(afy), = (35)
(e, B,y) r=2,
a, r=1
A = (36)
a, r=2,
and finally, let
F r=1
Note, from Eq. (37), that
() = (€Y = (—1rcy. (39

Using Egs. (35) and (37), we may put Eq. (22) in the
short-hand form

(C(T)):ik (a(r))i (vl)* (Vg) (vs)(”lvz"s)r (39)
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Consider the product
(CoICIPCo) 5 = «(F) g + B(D)g  (402)
= ofr, ri)(cy))jk’ (40b)

where a(1,r) = «, «(2,r) = f. Multiply Eq. (40a)
by C{" and sum i,

a(r, ;) = (Na)™ Tr (CCPCPCle) - (41)

(r, not summed). Equation (41) expresses the coeffi-
cients a(r, r;) as a trace of a product of four C/¥. The
coefficients a(r, r;) are functions of r, ry, ry, g, and
the order of the indices m, i, m, and not a function of
the row or column labels of the matrices. The coeffi-
cients are therefore similar in construction to the
6-j symbols. To see this more clearly, we may express
o(r, r,) as a function of Wigner coefficients.
Using Eq. (39), we have

H (a(r,)) 4
afr, 1) ==—73f, H (W.C),, (42a)
(a(r)) Vi
where
ﬁ (W.C), = (”1”2”3)r(”4”5”6)r1(”7”8"9)r,(”10"’111’12)r,,
. (42b)
and

z (e(vl)*ix;z)* (va))( (vg)* (vs)* (vo))
oyt m

X (e(v-,)*e(vs)* (v’))(s(v“’)* (vi)* (vu)) (420)

ay al
The summation indices «; are the row, column indices
of the matrices C{”. Employing the orthogonality
relations, Eq. (15¢), f,, may be written

fv,- = 6v1,—v116vz,—V46v5,—v76v8,—v106vs,—vD6v6,—vw(—1)4”

(43a)

where
p=—v — v, —v;—v3+v;+ v, (43b)
and we have defined (—1)* = (—1)%. Equation

(42a) then becomes

H (a(r,))
z (ryvava) (—vovs —
N(a, ) vi

X (—vsvgve)(—vs — ¥, — 1"9);-,(“1)"’- (44)
Using the triangle conditions on the Wigner coeffi-

cients, the symmetry relations and renaming the
indices, we have

ﬁ (a(r.-))%
N(a)}

ar, r;) =

7"3)11

a(r, ;) = (- 1)11+r, Z (”1"’2”12)r("’12”3”)r,

X (P1Vg¥1a)(V1s¥a¥)y,»  (452)
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or
3

amm=gwwﬂaww%ﬁme@m

where [6-j] is the 6-j coefficient which relates the
coupling schemes

[((Nl) X (NZ))1 X (N3)]r23
[((N) x (Na)),, X (No)],,

as can be seen directly from Eq. (45a). If the coeffi-
cients o(r, r,) are known, then Eq. (45b) determines
the 6-j coefficients for SU(n). The coefficients are
calculated in Appendix A, and given in Table I. For
the case SU(3), Eq. (45b) gives the crossing matrices
determined by de Swart.2® Crossing matrices for
SUm)¥ and semisimple Lie groups,® have been
discussed by other authors.

Higher-order products of matrices of the regular
representation may similarly be expressed in terms of
a trace of a product of matrices, and then as a product
of Wigner coefficients. Consider,

(C(rl)c(rz)c(r;)c(u)c(rs))jk — a(r r])c(r)
Then,
a(r, 1) = (Nagy) ™ Tr (CPICEPCICII T Cl?)
(47)

with r, not summed. Using Eq. (41), this may be
expressed in terms of Wigner coefficients,

(46)

IIwa*Ns
ama——73~{mz<nﬂuw0ﬂ,
" (48a)
winere
¢ = —v =V — ¥y — Vg — ¥y — Vg + V3 + Ve + Yy,
q (48b)
an
6
H W.C), = (”1”2”3)1(—Vz”s”s)r,(—”s”s”s)rg

X (—vg¥11 — Vo) (—Y11¥1a — "’6)14

X (=10 — vy — Vo), - (48¢)
The term in brackets in Eq. (48a) is, within a phase,
the 9-j coefficient for SU(n). Renaming the indices,

26 J, J. de Swart, Nuovo Cimento 31, 420 (1961). The above (6-)
divided by N?is de Swart’s crossing matrix.

27 C. L. Cook, G. Murtaza, and M. A. Rashid, Nuovo Cimento
41, 122 (1966); H. S. Mani, G. Mohan, L. K. Pande, and V. Singh,
Ann. Phys. 36, 285 (1966). See also, D. B. Fairlie, The Structure of
the Crossing Matrix for Arbitrary Internal Symmetry Groups—II
Matrices in SU(n), University of Durham (1966), and J. F. L.
Hopkinson, Imperial College, 1966.

28 D, B. Fairlie, J. Math. Phys. 7, 811 (1966).
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and using the symmetry relations, we find that the
term in brackets is the 9-j coefficient which relates the
coupling schemes

(1 x2), x (3 x4,
[(1 x4, x(2x3),],
uaxzxxshx4h}

[l x 4),, x 3], x2],)
(49b)

[1=(= 1)'“*"9-1'{ } (492)

[ 1= (_1)71+7‘3+759.j{

The coefficients for the product of five matrices, Eq.
(46), are given in Table II.
The product

CCrICinICriICts = of(r, r)C” (50)

with the last two indices u,, u, reversed, compared
to the product, Eq. (46), may easily be evaluated
using the relations of Table I for the third-order
product. They are not reproduced here. The product
Eq. (46) is, within the same factors given in Eq.
(48a), the 9-j coefficient which relates the coupling
schemes

[(1x2), x 3 x4),],

mlx@%xnﬁxﬂJ’
(51a)

HﬂxZLXﬂHXﬂ”}

[[(4 x 2),, x 1], x 3],,)
(51b)

[1= (—1)"‘“‘9-}'{

[1= (—1)’**‘"9-1'{

The other possible fifth-order matrix products,
Cu thu Cu Cu ’ cu CzCu Cu Cu ’ Ch thu Cu Cu ’
1 2 1 2 1 1 2 2 1 2 2 1
¢c,C,C,C, may also be evaluated from the
third-order results.
Finally, the 12-j coefficients are given in Table III,
and arise from the matrix products

C‘(:;l)Cl(lrzg)C‘(‘:;;)Cz{r‘)cflrls)c‘(‘?)cl(p) — a(r r)c(r)
— —1 (r) ~(r1) o (rg) ~(rg) (1)
a(r, r;) = (Na,)) " Tr(C;"C/VC Y C .y Ci™
(r5) (re) ((ry)
X ClllIS C#; C#: )

(52)

The coefficients a(r, r;), in terms of Wigner symbols,
may be written

H (a(r,))

a(r, 1) (a (r))

where

(1) = —» — v, —
— Yy — VT V3t Vgt vyt ¥y

@(DHHWQJ(m

Vs — Vg — Vi — Yy
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and

8
;!:Il (W.C) = (”1”2”3);—("”2”5”6)r1(—”5”8”9)r2

X (—¥gr1212)r (—Pu%1a — Vo) (— V1% — Vo)r,
X (—V1z¥ag — Voly (=20 — V1 — V1a),, -
The bracket in Eq. (53), times the factor (N)~® is the
12-j coefficient which relates the various ways the
product of five regular representations may be
coupled to yield the regular representation, as may be
seen by appropriately relabelling the summation
indices #;, and using the symmetry relations of the
Wigner coefficients.
The product

(Cflrl)c‘(‘rg)c‘(‘rs)cgu)CLrs)CLrG)C‘(‘n)) (54)
1 2 3 Tt 3 2 1

may easily be evaluated from the third-order results.
All other products of seven matrices may be reduced
to Eqgs. (52) or Eq. (54) plus a term which is of fifth

order in the matrix products. For example, consider
the product

__ ) lrad o) e g) lrs) ~lrg) (rq)
Mi - Cul Cllz Cl‘a Ci ' Clll5 C 6 C 7
— CLrll)CLT:)CL:g)c§r4)C;‘:5)[c(rs) C(17)] + oc(r rl)c(r),

B3 ?

using Eq. (52), the a(r, r;) known from Table III.

M lC("’[C,‘[}’, C(rz)]c(u)c(rs)[c(n;) C(r7 ]
+ afr, r)C.

The first term may be reduced to the product of five
matrices using the commutation results, Eqs. (A2),
(A4), (A6), and the orthogonality relations, Eq.
(8). These products provide other 12-j coefficients;
the coupling schemes related by such coefficients may
be found in the same manner as above.

Three features of the tables should be noted. The
product of 3, 5, or 7 matrices of the regular repre-
sentation, summed (as in the Tables) so as to leave one
index free, yields an F; or D, but not both. Thus, of
the 2 = 16 possible 6-j coefficients for the product
Eq. (40a), we have only half that number, eight,
which are nonzero. Similarly, there are 25 = 32
possible 9-j coefficients for a given ordering of the
indices in the product of five matrices, and 27 = 128
12-j coefficients for the product of seven matrices, as
given in the Tables. Further, an odd number of F’s in
the product always yields an aF;, and an even number
of F’s (an odd number of D’s) always yields a 8D;.
Finally, note that the coefficients «, § are always real.
These results hold not only for the products in the
tables, but for any permutation of the indices of the
products in the tables.
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Moreover, these results actually hold for a general
product of Gell-Mann matrices F;, D;, and are a
consequence of the charge conjugatlon properties of
the regular representation matrices, as we now show.
Consider the product

M- — C(n)c(rz) .. C(TD)Cgrn-'.l)C(r’z.'.z) R
= oF, + BD; = a(r, r)C",

(rap41)
clr

(55)

where u; -+ u, is a permutation of the indices
Pa® o phy; OF
alr, 1) = (Nagy)™ Tr (C;”M). (56)
Take the complex conjugate of Eq. (54),
a*(r, r,) = (—Da(r, r,), (57)

where 6 =r +r; 4+ -+ r,,,,, using Eq. (38). Em-
ploying Eq. (39), we may express Eq. (56) in terms of
Wigner coefficients

2p+1
H(a,z) 2p+2
or,r) = S TIWC (58)
N(a,)* w
where
z (E(vl)* (vg)* (va))
LN “2
x (e(u)* ¢ vs) ¥ (Hs)) (ei::z:-:d) ;‘l'e»+5)*€‘(‘:§(u+n))’
(58b)

and where the «; are the row and column labels on the
matrices C{" appearing in Eq. (56) [and Eq. (55)],
and iu, * -+ pyiu, - - - 1, are the subindices appearing
in Eq. (55). We note that because Eq. (56) is the trace,
to each (""", there exists an €{*)*, summed on a,.
However,
* *
(vk) s(v,C ) — 5vk .y (__1)(-vk)

atZ a;
using Eq. (18c). Further, to each e(‘;") there exists an
%), where u, = u, because ,u1 ,u; is only a
permutation of the indices p, - . Summed on
Us, we have

R
sk :k 6‘”‘_%'(__1)"1:‘

Finally, to €*?, there exists an e!s»+¢, summed on i.
Hence, f,, is a product of Kronecker deltas times a
real phase (—1)%. Since the Wigner coefficients are
real [see Eqs. (17) and (18)], the coefficients a(r, r;) are
real; a*(r, r)) = «(r, r,). This says the phase (—1)¢ =
41, and 6 must be even. If r; + - -+ + ry,,; 18 even,
riseven;ifry + -+ + ry, s odd, ris odd. We have
the result then that an even number of F’s in the
product, Eq. (55), yields a $D, and an odd number of
F’s in the product yields an «F;, where «, f are real.
This proof does not depend on the order of the
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subindices in Eq. (55), only that to each C{™, there
exists a partner C,“::’, (or C“["f’) = CL::’, summed on
.. Further C; may be placed anywhere in the product
and the result still holds.

From the charge conjugation symmetry property
of the Wigner coefficients, Eq. (38), the proof may be
carried through using the Wigner coefficients instead
of the matrices C**. The above result shows that in
any (3p)-j coefficient there must be an even number
of antisymmetric Wigner coefficients which occur
in the product of 2p Wigner coefficients in the (3p)-j
symbol.

APPENDIX A: CALCULATION OF MATRIX

PRODUCTS
From Eq. (2a), defining the Lie algebra, and the
definition (F;);; = —if,;z, we obtain from the first

Jacobi identity
[[}*i, }»j], Ak] + [[/1;, }‘k]a A‘i] + [Mk, Az’]’ Z;‘] = 0,
(A1)
the result
[Fi’Fi] = ’fcﬁch
From the second Jacobi identity
[{4:s 435 4] + [{4;, 4y A + [{4, A1 41 =0
(A3)
and Egs. (2) and (D));; = d;;;, we have the com-
mutation relations
[Fi7 Dj] = [Di’ Fj] = ia'kaa

(A2)

(A4)
and the relations

D,F;+ D,F;=F.D; 4+ F;D, = d;;F,,. (AS)
Since the coefficients f;;; are antisymmetric in all
indices [see Eq. (3a)], the matrices F; are traceless.
Further, since the trace of a commutator vanishes,
we see from Eq. (A4) that the matrices D, must be

traceless also.
From the identity
s (s A1 = (A, {4, 433 — {45, {4y, A3},
we have the commutation relation for the matrices
D,,
[D;, Djlwn = ifiin(Fi)mn + a(‘smiam‘ - 6z‘m‘sjn)-
(A6)
Finally, from the identity
[l,, [lk’ }*i]] - [Ai » [}*a” }“k]] = {lz‘ s {lja }*k}}
+ {)‘f’ {}“i’ j'k}} - 2{110 {}'ia lj}},
we obtain the anticommutation relations
{Dia Dj}mn + {Fi’ F;'}mn = zaaiil + 2di:ik(Dk)m'n

- a(amfam' + 6mi6nj)' (A7)
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If we add Eqs. (A2), (A6), and (A7), we get for the
sum of the products
(FiF; + DiDj)y = a1 + dijp(Di)mn

+ ifiik(Fk)mn - a(sim(sin' (A8)
Equations (A2), (A4)-(A7) represent six linearly
independent relations which can readily be obtained
from the associativity condition

(AAh, = 2:(A;4).

The six equations (A2), (A4)-(A7), are the only
relations uniquely defined since the associativity
condition provides only six relations. However, the
products F,F;, D,D;, F;D;, D,F;, require eight

I

relations, hence, they are not uniquely defined in the
general case. The above relations are sufficient to
evaluate the products of Gell-Mann matrices.

To begin, from Eq. (A6), we have

Tr (F;D;D,) = &fijm Tt (F,F) + iafy;.
However, from Eq. (A4), we have
Tr (F,D;D,) = &f;;n Tr (D, Dy). (A9)
Subtracting these two equations, we obtain
SiimlTr (FLF,) — Tr (D,D,)] = 2af ;..
From Eq. (A8), it follows that
Jism Tt (FF,) + Tr (D D,,)] = a(N — 1)fy.
Combining these two equations, we find
Tr (FeF o )fiim = @ fiins
Tt (DyD ) iim = Wafiins

where a, = $a(N 4+ 1) and g, = {a(N — 3). This
implies, since it holds for all i, j, k, and since the
matrices F; of the regular representation are inde-
pendent, that

(A10)

Tr (D;D;) = a,0,;.

To evaluate triple products of Gell-Mann matrices,

let C;, be defined as in Eq. (37). Then we may write
(CRCIICI) = Tr (CP°CTICe)

= (=1 Tr (CI?CrVC).  (A12)

It is necessary, then, to evaluate traces of products of

matrices of the regular representation. From Egs.
(All) and (A2),

Tr (FiFF) = $aifin. (A13)
From Eqs. (A9) and (A2),
Tr (F;D;D,) = 3a,fix . (Al4)
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TasLE I. States, weights of the SU(r) regular representation.

State
(in) hy hy hy h, hs hq has hay
(1) 3 3 1 ] ] Jroveseeemaeenees Yn—1 1
(2n) —% 3 i : | |
(3n) 0 -3 b ,‘ | ‘
(4n) 0 0 -3 1
(5n) 0 0 0 -3 1 i
(6n) 0 0 0 0 -3 L R Hn—1 1
(n — 2n) S N S SRR, MU — 1n =1
(n — 1n) 0 0 0 0 0 0 —(=2
g (n—1)
Using Eq. (A4), it may be shown that In a similar manner, from Eqs. (A4), (A6), (Al7),
Tr (F,D,Dy) = Tt (D,F;D;) = Tr (D, D,Fy), and (A19), we obtain the second relation
(A15) TI‘ (FzDkaDm) = Zl (b(lfz:m dnkm + affkmn di;in)
Tr (F,F; D) = Tr (F.D,;F,) = Tr (D;F,F).

Then, Eqs. (A13), (A14), and (A10) taken together,
yield
Tr (D,FF,) = 3a, dy.- (A17)
Finally, from Eq. (A8), we have
Tr (F;F;Dy) + Tr (D;D;D;) = $a(N — 5) dijn..
(A18)
Using Eqs. (A16) and (A17), we obtain

Tr (D, D;D,) = by d;., (A19)

where b, = 1a(N — 11). From the above trace
equations and (A12), we get the results of Table L.

The products of five Gell-Mann matrices follow in
a similar manner. The analog of Eq. (A12) is

(CEICECC Cl),

= Tr (Cl(rs)Tci’r‘g)Tcg_rl)ng))(cl(crs))mn

= Tr (C{VTCEITCEICLONCE )

= Tr (CITCETCED CYYCT ) - (A20)
Two quadratic relations are useful in obtaining the
results of Table II:
Tr (F.F;F.D,,) — Tr (F;F;F,D,)

= Tr (F,F;F.D,) + Tr (F.F; D Fy) = 30, fijn duim
using Eqgs. (A4) and (A17). But, from Egs. (A4) and
(Al7), we have
Tr (FFiF D) — Tr (FEF; D) = 301 femn dign -

Adding these two equations gives the relation

Tr (Fi‘F:rFkDm) = iiaf(f;in dnkm +ﬁcmn diin)' (A21)

Using the above two relations, we may evaluate
the trace terms as required by (A20). We note
immediately that

Tr (FF,FiF,) fumn = 0, (A23)
Tr (D,F,D;F,) fimn = 0, (A24)
Tr (F;D,,F;D,) fimn = 0, (A25)

Tr (D, D, D;D,) fimn = 0, (A26)

because, in all these cases, the trace is symmetric
with respect to the interchange of the indices m, n,
whereas f,,., is antisymmetric. Further,

TI' (FiFmI::iDn)ﬁcmn = 0’ (A27)
using Eqgs. (A21) and (Al16).
TI' (Fszl:aD'n) dkmn = 0’ (A28)
using Egs. (A21) and (A1S).
Tr (FiF DiF,) femn = 0, (A29)
using Eqs. (A4), (A17), and (A21).
Tr (F,F, D;F,) d.,., =0, (A30)
Taste II. Third-order products.
(FnFiFy) = a.F;
FmEDm = DmEFm = _i‘a/Di
F,D.F,, = ta;D;
(FmDiDm) = D,DF,, = _'}adFt
DmEDm = &adp‘i
D,.D;D,, = $bsD;
a;,=%a(N+1), a;=1%1aN—3), bs=ta(N—11)
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TasLe III. Fifth-order products.*

All products of 5F’s 4F’s and 1D, 3F’s and 2D’s are zero.

D,.D,DF,F, = D,D,F,F,D, =0

D, D.F;D,F, = DnFpD:F,Dy = aa;D;
D,D,D;D,F, = DD, F;D,D, =0
DmD,,D,'FmD" = aadF,»

D,D,D;D, D, = —ac;D; where ¢4 =a(N —9),

a; = 3a(N + 1) and a; = 3a(N — 3).

8 Transpose of the products in the table give the remaining possible fifth-order products.

TABLE IV. Seventh-order products.?

FulFﬂzFﬂaFiFﬂxFﬂzFlla = a(%a)g

All products of 6F’s, 1D and 5F’s, 2D’s are zero.

F,

l‘lFlleI‘:xFiDﬂxDﬂzDﬂa = _FﬂlFllellaD"Dlthleﬂa = _FﬂlFﬂzDﬂaDiDﬂlFﬂzFﬂa
= Fu1F#2FM3DiFM1DuzDM3 = _FMFMzDﬂsR'DMD#zF#a = _FulDﬂzFﬂaDiDMFﬂzFﬂa
= +DM1FIIZDM3D‘FI‘1FM2F#3 = —FM1FH2DI‘3FfFﬂ1DI‘2Dﬂ3 = _FﬂlDﬂzFﬂsF"DluDﬂzFﬂs
= Dy Fy,Fy . DiDy Fy Fuy = Fy, Dy, Fy FiFy Dy, Dyy = Dy Fyy Fu FiDy Dy, Fy,
= =Dy Fu Fu Fiby Dy, Dyy = —Fy Fu, Dy FiDy Fy, Dy, = FMxDﬂzFﬂaDiFﬂlDﬂzFﬂa
= —F, D,k FiD, F,, Dy, = — D, F,,F,,D;F, D, Fy, = DulFuzFuaFiDlleMDlla
= _DﬂlFlleﬂaDiFhF#zDﬂx = a(3a,)’D;

—DﬂlDuzDﬂ'sD‘FﬂlFuzF#a = DHlDﬂlelstFﬂlFMle‘s = DM1D#2FH3F‘FA‘1DI‘2D#3
= D#xDﬂzDuaﬂDﬂlFuzFua = —D#1DM:Fﬂ3D"FI‘1FI‘2Du3 = —DMFMDM:;F‘FMDMDM
= =Fu Dy Fu FiDy, Dy, Dyy = Dy Dy Fy DDy Fy Fy, = =Dy Fu, Dy DiFy Fpu, Dy,
= FulDﬂzDMaEFﬂlD#zDus = DﬂllFMzDﬂ;;DiDﬂlFﬂzFﬂa = _FﬂxDﬂzDusDiFhFﬂle‘a
= —Fu Dy, Dy DDy Fy Fuy = — Dy Dy, Fy DiFy Dy Fy, = Dy Ky, Dy FiDy Fy, Dy,
= =Dy Fy, Dy DiFy Dy Fyy = —Fy Dy Dy F,Dy Fy Dy = Fy Dy Dy DiFy Dy Fy,

a
= Fyu, Dy, Dy FiDy Dy Fyy = i (asa4) F;

a
Dﬂ1DM2DIJ3DiDII1FM2FI‘a = DﬂlbﬂzDﬂaFiFﬂlbﬂzDﬂa = Z (afed) D,
DM1DuzDu3DiF#1FM2DII3 = Dﬂ1D#2D#aFiDIJ1DﬂzFMs = DﬂlDﬂzFﬂSDiDﬂlFu-zDuz
a
= Dy, Dy Fiug DiDiy Do Fiag = DyyFiy Dy DiDyyFiy Dy = (@, D

=Dy, Dy, Dy, DiFy Dy Fy, = ~Dy, Dy Fy DiFy Fy Dy, = Dy Fy, Dy DDy, Dy, Fy
= FulDﬂle»laDiDmD#-zFﬂa = (s)°a;D;
Dy, Dy, Dy FiDy Fy, Dy = Yaa,fuD;

3

—a
Dy, Dy, Dy DiDy, Dy Fyy, = = (aaca)F;

b, D,,D, D;D, F,,Dy, = —¥(a)a;F;
a
DuxDﬂzDustFmDuzDua = Dy, Dy, Dy FiDy Dy, Dy = 7 (asca)F;

Dy Dy Dyuy D Dy, Dy, Dy = Didal(ar)® — gaba)

where

eg=a(N —35), fi=a(N—6),

ca=a(N—-9), gs=a(N—21)

a;=3a(N+1), a:=1%aN—3), bs=1}a(N—11)

8 Transpose of the products in the table gives the remaining possible seventh-order products.
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since the trace is antisymmetric under the interchange
of m, n. Using Eq. (A20) and employing the symmetry
of the matrix products, we see that all cases of the
products containing one or two D’s vanish.

In a similar manner, but now using Eq. (A22),

Tr (F,F,,D;D,) fimn = iaa,d;, (A31)
also using Eq. (Al7).
Tr (D,F,.D;D,) fimn = 0, (A32)
using Eqgs. (A4), (A19), and (A22).
Tr (D,F,,D;D, )y, = iaa, fis1. (A33)

using Eqs. (A4), (A14), (A19), and (A22). Combining
Egs. (A4) and (AS), we have the relation

FkDm + Dka = dkmnFn + iﬁcmnD'n'
Using this relation and Eqs. (A17), (A19), (A24), and

Table I, we have

Tr (D,F,,D;F,)dy, = —aa,dy,. (A34)

For the final relation, note that
TI' (DiDmF}Fn)dkmn = lTr (FnDszDk)f;mn ’

using (A20). Then, using Eqs. (All), (A17), and
(A22),
Tr (D, D, F;F,)dm, = 0.

Finally, using this equation, and Eqs. (A8), (All),
(A17), and (A19), we obtain

Tr (DiDmDa'Dn)dkmn = _acddiiks (A35)

where ¢; = a(N — 9). These trace relations, together
with Eq. (A20), give the results of Table II. Table
III follows in a similar manner; the calculations are
straightforward, but tedious and are not reproduced
here.

APPENDIX B: PHASE CONVENTION OF
WIGNER COEFFICIENTS

The phase convention, Eq. (26), and the generalized
charge Q,, Eq. (13d), lead to a positive phase for the
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matrix elements of the raising operators L7,
YL By 20, j=2,-"",n (B1)

It may be shown first, from Eq. (13d) and Table 1,
that

(_I)Qm‘)= +1 j=2,-+-,n,
(=16 = —1 otherwise,
(_1)me = 0. (B2)

Consider « = (1j), , y = %1, -+, £m/2. Then,
from Eq. (26b), (—1)* = +1. From the triangle
relations of Egs. (B3) and (B4) we have

«= (), f=0h,y=>1), j>1, (B3
a=(1j), = (kD,y =(kj), j>1. (B4

From Eq. (B3), since j > 1, and I/ >1, 6 =Q, +
Q, = 2, hence, a positive phase. From Eq. (B4),
j>Lk>1,andf is 0, (=1 =1. If a= (1)),
and g = —a = (jl), from Eq. (17¢), 2bf(«, B, )
is negative. However, (—1)* = —1, by Eq. (26b),
so the matrix element, Eq. (27), is positive. Finally,
let «=(1j), f=m-+1,---, N, Then, from Eq.
(17¢), 2b f(=, B, y) is negative. Here again, (—1)® =
—1, so Eq. (27) is positive.

Equation (27) and the conjunction operation,
L% = (—1)RaL—®) determines the relative phases.?®
The absolute phase of the Wigner coefficient may be
fixed by requiring the coefficient with states oy, =
vYmax = (12) be positive. This coefficient is nonzero.

The relative phases of the coefficients

(N N N)
« Byl
are determined by the phase convention, Eq. (26).
The absolute phase is fixed, as above. Note that for

SU(3) this maximum state vanishes [see Eq. (18¢)
and Ref. (23)].

2% This is shown for SU(n) by Baird and Biedenharn (Ref. 16).
The latter authors’ phase convention is (y |[L¥*+1| ) > 0,k =
1,+++,n— 1, a natural choice for the Gel’fand states, but one
which does not reduce to the phase convention of de Swart (Ref. 8)
for SU(3), or the convention of C. L. Cook and G. Murtaza, Nuovo
Cimento 39, 531 (1965), for SU(6).
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An explicit algebraic formula is obtained for the multiplicity M(y) of a vector y belonging to the
fundamental domain of the group G(2). Using this, the internal multiplicity M™(m’) of a weight m’ of
the irreducible representation D(m) with the highest weight m is calculated through Kostant’s formula for
the dominant weights. The Clebsch-Gordan decomposition of the direct product of two irreducible repre-

sentations is then obtained.

I. INTRODUCTION

T is well known that- the group G(2), which is a

subgroup of O(7), has been used extensively in
nuclear physics' and in elementary particle physics?
for classifying levels and for studying interactions
between particles. It is desirable, therefore, that the
Racah algebra of G(2) be developed as in the familiar
theory of angular momentum. The problem of finding
the invariants has been solved.® Any irreducible
representation (IR) is specified by the eigenvalues of
the Casimir operators, or equivalently, by the com-
ponents of the highest weight.

The next problem is the determination of the
internal and external multiplicity structures* of the
IR’s of the group. According to Biedenharn’s theorem,?
the external multiplicity of an IR D”, occurring in the
direct product of two IR’s, D and D', is closely
connected to the internal multiplicity of the weights
in D or D'. Though the internal multiplicity structure
is known through Kostant’s formula,® practical
computations with it are very tedious. It turns out that
it is sufficient to know the multiplicity structure of
1/A.” Knowing this, the multiplicity M™(m’) of a
weight m' contained in an IR with highest weight m
can be calculated.®

Recently, an algebraic method of getting M™(m’)
has been worked out® for the case of SU(3). In the
present paper we have obtained an expression for the

L G. Racah, Phys. Rev. 76, 1352 (1949).

2 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev.
Mod. Phys. 34, 1 (1962).

3 B. Gruber and L. O’Raifeartaigh, J. Math. Phys. 5, 1796 (1964).

¢ We use the terminology introduced by A. J. Macfarlane, L.
O’Raifeartaigh, and P. S. Rao, J. Math. Phys. 8, 536 (1967).

5 L. C. Biedenharn, Phys. Letters 3, 254 (1963); G. E. Baird and
L. C. Biedenharn, J. Math. Phys. 5, 1730 (1964).

8 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962), p. 261.

7J. P. Antoine and D. Speiser, J. Math. Phys. 5, 1226 (1964);
B. Gruber, ibid. 7, 1797 (1966).

8 B. Gruber and T. S. Santhanam, Nuovo Cimento 45A, 1046
(1966). A similar formula has been worked out for SU(4) by B.
Gruber, ibid. 48A, 23 (1967).

internal multiplicity M™(m’) for the group G(2). The
problem is more complicated in view of the fact that
there are six negative roots and two (negative) primitive

roots.
II. THE GROUP G(2)

The root diagram can be conveniently regarded as
consisting of all vectors of the form e, —e; and
e; —2e; +e, = (i,j,k =1,2,3), which all belong
to the hyperplane

3
>x;=0.
i=1

The negative primitive roots are

fr=1(0,—1,1) =¢e; — e,
fr=(—1,2, —1) = —e; + 2e, — 5.

The weight space is three dimensional with a sub-
sidiary condition that

3
> m; =0,
=

where the m,’s are the components of the weight m.
Using the theorem that 2(m, «){(a, ) = integer
(where m is a weight and « is a root), it is clear that the
components of m are integers.

Let us now discuss the Weyl group. Reflecting the
weight (my, my, my) in the plane perpendicular to
e; — ¢e;, we see that m, <> m,, i.e., the components of
m are permuted. Next consider the reflection in the
plane perpendicular to e; — 2¢; + €. It can be seen
that the effect of this is to permute the components
of m with a total change of sign. Thus, we have con-
sidered all possible reflections perpendicular to the
roots and have seen that they permute the components
of m or permute the components of m with an over-
all change in sign. The Weyl group is, therefore, of
order 12. From these results, it follows that if m =
(my, my, my) is to be a dominant weight, then

(@) my > my 2> my,
(b)) m >0,my <0, m 0.
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Proof: Assume (a) is not true, ie., m, < m,,
(r =1,2). Applying such a Weyl reflection to m
which exchanges m, and m,, , we get a weight m’ such
that the first nonvanishing component is positive, thus
leading to m’ being higher than m. Hence m, >
m,.;, which proves (a).

To prove (b), we note that condition (a), together
with

leads immediately to m, > 0 and m; < 0. We need to
prove only that m, < 0. Assume the contrary, i.e.,
my > 0. Applying such a reflection, which gives a
weight m’ with —my; as its first component, so that
m’ — m has as its first component m, which is positive,
we are lead to a contradiction. Hence, m, < 0.

ITI. MULTIPLICITY STRUCTURE M(k,, k;)

In order to find the multiplicity of the dominant
weights, let us first calculate the multiplicities M of the
vectors in 1/A using the expression’

L=Z"'Zexpi(2%ﬂ,~—Ro,¢), 2
A @S0 an—o i=1

where the a,’s are nonnegative integers, the §,’s are all
the negative roots, and R, is half the sum of all positive
roots. The multiplicity # of a particular vector y
of 1/A (which belongs to the fundamental domain of a
group of rank /),

y=kipy+ -+ kp, — Ry, 3)

where (8, ' f,) are the negative primitive roots
(! < n) and (k,-'-k,) are nonnegative integers, is
then given by the number of ways ¥ can be written
as a sum over all the negative roots:

n

Y= glaiﬂi = R,. 4

The multiplicity of the dominant weight m’, M™(m’)
can then be obtained from?

M™(m') = 3 dsM(m' — S(m + Ry))
se

= 3 0sM(K], Ky),
SelV

)

where the summation extends over the elements of the
Weyl group W and 65 = +1 according to whether §
is an even or odd reflection, respectively. Equation (5)
is Kostant’s formula® for the dominant weights.

The problem of obtaining #(k,, k;) for G(2) then
reduces to finding the number of ways (k,f; + kyf5)
can be expressed as (@8, + * - + asfs) for given
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k, and k,, i.e.,

kiBr + koBy = aify + ayfs + ax(By + B2)
+ a,(28, + Bo) + a;(36: + o)

+ 4536, + 262), (6)
so that
ky = a, + az + 2a, + 3a; + 3a,, ™
k2=a2+(13+a4+a5+206.
We have to find all the possible values allowed for
(@1, , aq) for given (k,, k;). These equations are
known as Diophantine equations,” and we have
solved them using the theory of partitions. One finds

M(kl B kz)
k1<kg
= +k1)+2[k1—’J
i=0 2
+z[k1-—i—2j:l+ [kl—i—Zj—3k:|
i,=0 3 1,5 k=0 3
-1
=({14+k)+ 2 (k, odd) or
4 (keven) Jom

+ ki — Dlka = 4) + 425
+ Mk, — 3, ky). ®)
We use the square bracket to denote the integral part
of the expression.

M(kl ’ kz)

Ty > 8k

= (1 + k) + 3 (ks — )

o ky—i—j—
+30e—i—p+3 |

= a5k, + 2)(k3 + 10k3 + 30k, + 24), if k, is even;

or
Aaly + DS + 11K2 + 39k, + 45) if kyisodd. (9)

? P. A. MacMahon, Combinatory Analysis (Chelsea Publishing
Company, New York, 1960), Vol. II, Sec. VIII. The number of
solutions of the Diophantine equations (7) can be given by the
method of generating series. Now Eq. (7) can be written as a matrix
equation

(ay, "+, a)C = (ky, ky),

where C is a (6 X 2) matrix. The number of solutions of Eq. (7)
is then obtained as the coefficient of x¥1x%2 of the generating function

[
Sl x) =[] — xgixgi1,

i=1

where the C;; are the elements of the matrix C. We are grateful to
P. K. Menon for drawing our attention to this fact.
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M(kl H k2)

2y Shy < 3hz

ky—1—72j
=(1+k2)+2(k2_i)+ E l:_l-_l——l]
i i+j+15ks 3

ke —i—j— k}
+ fe 7 0" J =
i+2i+g+3ﬁk1 [ 2

= %(kz + 1)(k2 +2)+ %{(kl - 1)(k1 —4) + 4}1.»{:3
— H(ky — 2ka)(ky — 2ky — 3) + 4}
for (k, — 2k,) 2> 2,
+ deko{(ky — 2)* + 10(k; — 2)°
+ 30(ky, — 2) + 24} foreven k, 2> 2,
+ ks — D{(ks — 2)* 4+ 11(ky — 2)°
+ 39(k, — 2) + 45} forodd k, > 3,
— Aoul(u — 27 + 10(u = 2 + 30(u — 2) + 24}
foreven u > 2,
— s — D{(p — 2 + 11 — 2)°
+ 39(u — 2) + 45} forodd wu >3, (10)

where
=k — 1 — T4k = 3]
Mk, , ko)
3y <2 <dkg
ky, — i ki, —i—2j
—+k+ 3 [ }—Z[L——ﬂ
i+1<ky 2 i+it1<k, 3
N [kz N k]
i+254+3k+3<k, 2
K—1
=1+ k) + forodd k, >3,

2
+ 1(4—‘ foreven k, > 2,

2
_ :Wf—’r)—_—l} forodd (k; — k) >3,

2
_ (_k_l_—:—kg)— foreven (k, — k) > 2,

+ 3 — Dk — ) + 4} for k>3,
— 3{(ky — 2ko)(ky — 2ky — 3) + 4}
for (ky — 2ky) > 2,
+ sko{(ky — 2)* + 10k, — 2)°
+ 30(k, — 2) + 24} foreven k, > 2,
+ (ke — D{(ky — 2)° + 11(k, — 2)*
+ 39(k, — 2) + 45} forodd k, > 3,
— &u{(u — 2 + 10(u — 2)* + 30(u — 2) + 24}
foreven u > 2,
— @o(u — D{(e — 2° + 11(u — 27
+ 39(u — 2) + 45} forodd u>3. (1)
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Mk, , ks)

2%y <2k <3kp

—U+k)+ 3 [k‘_'}+ > [k_—“i_zj]

i+1<ks 2 i+it1<ky 3

-+

[kl-—i—Zj—3kj|
i+ ikl <kg 3

K —1

=+ k) + forodd k, >3,

ki
+ Z foreven k; > 2,
(ky = ko) — 1
_ {___4__
_ {(kl — k)
4
+ {(k, — 1)k, — 4) + 4} for Kk, >3,
— Hky = 2ka)(ky — 2k, — 3) + 4}
for (k, — 2k;) > 2,
+ M(k, — 3, k;) with k3 > k; — 3,
— M(ky, — ky — 2, ky) with ki > (ky —ky—2).
(12)
Equation (8) is a difference equation and can be
solved for each modulus 3 of k;. However, Eq. (8)

itself is sufficient to determine M(k,, ky)(k; < k,)
straightaway.

} forodd (k, — k) > 3,

} foreven (k, — ky) > 2,

IV. MULTIPLICITY STRUCTURE M™(m’)

The multiplicity structure M™(m’) is then given by
Eq. (5). This is the number of ways a weight m'(=
m + ki, + kof,) can be expressed as

6
m = —R, + 2 a;B; + S(m + Ry),
i=1
Ry, = (3, —1, =2).

We notice that when m’ is dominant, only five Weyl
reflections contribute to Eq. (5), the others leading
necessarily to negative integer coefficients (k¥, k5).
From Eq. (5) we obtain

(13)

M"(m') = M{(m; — m)) + (m; — mg); m; —
— M{(mi— m)) + (my — my) — 15 m; — mj}
- M{(m:; —my) + (my — my); —(my + my + 1)}

+ M{(mi — m)) + (my — mg) — 4; —(my + my + 1)}
+ M{(m;—mj) + (my — my) — 1; —(m] + my+ 2)}.
(14)

Equation (14) along with Eqs. (8)-(12) give M™(m’)
for any dominant weight m’. The multiplicity of any
other weight can be found by using the Weyl reflections

mi}
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In Egs. (8)-(12), the intervals for k; and k, depend
sensitively on the coefficients of the a’s in the Dio-
phantine equations (7).

V. EXTERNAL MULTIPLICITY STRUCTURE

It is well known from the work of Biedenharn® that
if D(A) and D'(A’) are two IR’s of a group L with A
and A’ as their highest weights, respectively, and if D’
dominates'® D, then the product D’ x D contains
IR’s for which (A" 4 m) are highest weights, where m
stands for all weights contained in D. The multiplicity
of the representation (A’ + m) in the reduction of
D' x D is the same as the internal multiplicity of the
weight m in the representation D. The conditions for
D’ to dominate D for G(2) are*: A} > 24, + 34,, and
Ay 2> AL+ 225, where (27, 4) and (4, 4,) are the
components of A" and A in the familiar two-compo-
nent notation. More explicitly, Biedenharn’s theorem
can be stated in terms of characters:

xm”@%=%%mw“W@- (15)

The assumption that D’ dominates D is needed to
make (A’ + m) satisfy the conditions for it to be
dominant so that it can be the highest weight of some
representation in the reduction. The important point
is that the representation with (A’ + m) as highest
weight occurs y, times, where y,, is the internal
multiplicity of m in D(A). y,, can be immediately
computed for any m in D(A) using our results in
Sec. 1V. Thus, knowing M™(m’) and Eq. (5), the
Clebsch-Gordan reduction of the product of two
IR’s can be written down immediately. We give an
example in the Appendix.
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APPENDIX

We give a few examples of multiplicities of some
weights using the results obtained by us.

10 See Ref. 4 for all details about the conditions for D’ to dominate
D. In this paper, a complete list of references to earlier literature
may be found.
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Consider the IR D?(1, 0), defined in the conven-
tional DV(4,, A;) notation, where the highest weight
(4, 4;) is given as A, times one fundamental weight
and 4, times the other. The connection with the three-
component form is given by

my, = )‘1 + 212’
My = _229
my = —(4 + ).

We calculate the internal multiplicity of the domi-

nant weight (0, 0). From Eq. (14) we find that

M9, 0) = M(2,1) — M(©0, 1) — M(2,0).
Now using Egs. (8)-(12), we find that
M@2,1)=3, MO, 1)=1, M(2,0)=1,
so that
MP90,0) = 1.

Similarly, for the internal multiplicity of the
dominant weight (0, 0) in the representation D¥(0, 1),
we get

MY(0,0) = M(3,2) — M(2,2) — M(3,0)
=7 —4—1=2
Let us now consider the direct product D(0, 1) x

D¥7(3,2). It can be seen that D'*7(3, 2) dominates
D0, 1). The various weights of D'(0, 1) are

(Oa l)’ (33 _1)’ (la 0)5 (—15 1)’ (2, _1)’
(—3, 2)5 (3: _2)’ (—2’ 1)7 (17 _1)’ (_19 O):
(_35 1)7 (0, —1)’ (0’ O)a (Oa 0)

Using Biedenharn’s theorem, Eq. (15), we see that
D™(0, 1) x D1%(3,2)
—_ D4096(3’ 3) + D3003(6’ 1) + D2926(4’ 2)
+ D2079(2, 3) + D1728(5’ 1) + D748(0’ 4)
+ D™(6,0) + D*5(1, 3) + D™(2,2)
+ D°*(4,1) + D?™(0, 3) + D*8(3, 1)
+ 2. DB4(3, 2).
It should be noted that the occurrence of D%47(3, 2)

twice in the above reduction is due precisely to the
appearance of the weight (0, 0) twice in D*(0, 1).
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We consider the unitary irreducible representations of the group SO(2, 1), belonging to the continuous
and the discrete classes. We cast them into a form in which the noncompact generator of an O(l, 1)
subgroup is diagonal. We examine some properties of the remaining generators in this basis. We recover
the known result that the spectrum of the noncompact generator covers the real line twice for repre-
sentations of the continuous class, and once for those of the discrete class.

INTRODUCTION

ECENTLY, there has been considerable interest
in the possible uses of noncompact Lie groups
for the description of physical systems. For example,
certain groups have been suggested as noninvariance
groups or spectrum-generating groups for simple
quantum-mechanical systems and for elementary
particles.! Generally for the purposes of physics one
has to deal with unitary representations of Lie groups,
and for a noncompact Lie group it is well known that
any nontrivial unitary irreducible representation
(UIR) must be infinite dimensional. Further, for
many practical purposes it is necessary to have these
representations in quite explicit form, with a suitable
basis being chosen in the Hilbert space of the repre-
sentation, and the infinitesimal generators of the Lie
group being specified, if possible, by means of their
matrix elements in the chosen basis.

In dealing with semi-simple noncompact Lie groups
and their UIR’s, two different possibilities arise. For
certain groups it happens that in every UIR, each
finite-dimensional UIR of the maximal compact
subgroup appears once or not at all. Examples of
such noncompact groups are the pseudo-orthogonal
groups O(p, 1) in (p + 1) real dimensions, and the
pseudounitary groups SU(n, 1) in (# 4 1) complex
dimensions. In these cases, a basis for the representa-
tion space for a UIR of the noncompact group can be
constructed by taking an infinite sequence of distinct
UIR’s of the maximal compact subgroup, and the
basis vectors are labelled completely by the Casimir

* Supported in part by the U.S. Atomic Energy Commission.

t Present address: Tata Institute of Fundamental Research,
Bombay, India.

1 A partial list of references: A. O. Barut, Phys. Rev. 135, B839
(1964); Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Letters
17, 148 (1965); T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev.
Letters 15, 35 (1965); N. Mukunda, L. O’Raifeartaigh, and E. C. G.
Sudarshan, Phys. Rev. Letters 15, 1041 (1965); C. Fronsdal, in
Proceedings of the Third Coral Gables Conference (W. H. Freeman
& Company, San Francisco, California, 1966); E. C. G. Sudarshan,
ibid.; Y. Nambu, “‘Relativistic Wave Equations for Particles with
Internal Structure and Mass Spectrum,” University of Chicago
Preprint (1966).

invariants and internal “‘magnetic’” quantum numbers
of this subgroup. All of these labels are discrete
variables, and the well-known algebraic techniques
involving Clebsch-Gordan coefficients, the Wigner—
Eckart theorem and reduced matrix elements with
respect to the maximal compact subgroup, can in
principle be used to build up UIR’s of the noncompact
group. On the other hand, for certain other semisimple
noncompact groups, the situation is generally not so
straightforward. A given UIR of the whole group may
contain a given finite-dimensional UIR of the maximal
compact subgroup several times. Examples are the
pseudo-orthogonal groups O(p,q) for p, ¢ > 2, the
pseudounitary groups SU(n, m) for n, m > 2, and
the special linear groups SL(n, R), SL(n, C) for
n > 3. In these cases, the Casimir invariants and
internal “magnetic” quantum numbers of the maximal
compact subgroup do not suffice to completely label
the basis vectors of an UIR of the whole group, and
one needs additional operators to distinguish the
several occurrences of the same UIR of the maximal
compact subgroup. [Even for such groups, of course,
there may be special classes of UIR’s, generally called
degenerate UIR’s, in which there is no multiplicity
of occurrence of UIR’s of the maximal compact
subgroup.] In such a situation, the previously men-
tioned algebraic methods are enormously harder to
apply.

These remarks suggest that one examine the UIR’s
of the second kind of noncompact semisimple groups
by reducing the UIR’s with respect to a noncompact
subgroup, this subgroup being chosen to be “large
enough” so that the muitiplicity problem is (almost)
removed.? For example, one can ask how the UIR’s
of the de Sitter group O(3,2) are constructed by
putting together UIR’s of the O(3,1) subgroup,
rather than of the maximal compact subgroup O(3) ®
0(2). Of course, it is clear that this immediately
"% This kind of reduction of representations has been attempted

in several recent papers. See, for example, J. Niederle, ICTP Pre-
print 1C/66/99, Trieste (1966).
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raises many problems. For example, one will have
to deal in general with direct integrals, rather than
direct discrete sums, of UIR’s of the noncompact
subgroup, and these latter UIR’s will also be infinite
dimensional. Further, in such a basis, the infinitesimal
generators of the whole Lie group may have to be
treated with greater care, and the use of matrix
elements in a simple-minded way may not be possible.

In this paper, we consider the simplest problem of
this genre. We examine the UIR’s of the pseudo-
orthogonal group in three dimensions, O(2, 1), cast
them into a form in which the reduction with respect
to the noncompact subgroup O(l,1) is apparent,
and then examine the nature of the infinitesimal
generators in this basis.®> As is well known, the Lie
algebra of O(2, 1) is the same as the Lie algebra of the
group SU(1, 1) of pseudounitary unimodular matrices
in two dimensions. Of course, in this example, the
maximal compact subgroup O(2) is “large enough”
so that there is no multiplicity problem in the reduction
of UIR’s of 0O(2,1) [or SU(1, 1)] with respect to
O(2). This is also the case when one considers the
group O(3,1). Nevertheless, these examples are
interesting in themselves, and they may serve to point
out some features to be expected when one treats more
complicated cases like, say, the reduction of UIR’s
of O(3, 2) with respect to O(3, 1).

We outline briefly the contents of the paper. In
Sec. I, we recapitulate some familiar facts and
properties of the group SU(l,1) and of its Lie
algebra. In Sec. II, we describe briefly the different
kinds of UIR’s of SU(1, 1), restricting attention to
single valued UIR’s of SU(1, 1). This corresponds to
restricting oneself to single- and double-valued UIR’s
of 0(2, 1), since, as is well known, there is a two-to-
one homomorphism from SU(1, 1) to O(2, 1). These
UIR’s will be written, as usual, in a form which is
already reduced with respect to the maximal compact
subgroup of SU(1, 1). The material in the first two
sections is collected together only in order to make
this paper reasonably self-contained.* Sections I
and IV are devoted to examining two classes of UIR’s
of 0(2, 1), namely the continuous (nonexceptional)
and the discrete classes. We exhibit them in a form
suited to the reduction with respect to a noncompact
subgroup O(1,1) of O(2,1). In both cases, for
simplicity, we restrict ourselves to single-valued

3 The classic work on the unitary representations of 0(2,1) is
V. Bargmann, Ann. Math. 48, 568 (1947). Some recent papers
concerned with this group are: A. O. Barut and C. Fronsdal, Proc.
Roy. Soc. (London) A287, 532 (1965); A. Kihlberg, Arkiv Fysik 30,
121 (1965); W. J. Holmann III and L. C. Biedenharn, Ann. Phys.
39, 1 (1966).

4 This material is taken from V. Bargmann, Ref. 3.
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UIR’s of O(2, 1). There exists also a class of UIR’s of
SO(2, 1) called the exceptional class. The treatment
of these UIR’s will be taken up in a later publication.
We also discuss in a subsequent paper the reduction of
UIR’s of O(3,1) with respect to its noncompact
subgroup O(2, 1).

I. RESUME OF THE GROUP SU(1, 1)

It is well known that the Lie algebras of SU(1, 1)
and of O(2, 1) are the same, and that there is a two-to-
one homomorphism from SU(1, 1) to O(2, 1). Though
we will later analyze only certain single valued UIR’s
of 0(2, 1), we shall describe here the structure and
properties of SU(1, 1) since the corresponding matrices
are easier to deal with.

The group SU(1, 1) is the group of all two-dimen-
sional complex pseudounitary matrices of unit deter-
minant. In other words, it is the group of all complex
unimodular linear transformations on two complex
variables x;, x, leaving the quadratic form

[ X112 — [xo|?

invariant. A general element g of SU(1, 1) corresponds
to a matrix

g (5 0) 1=

g a

with «, § being complex numbers and the bars de-
noting complex conjugation. Distinct matrices corre-
spond to distinct elements of the abstract group. The
parameters o, 8, obeying l«|> — |§|2 = 1, are equiv-
alent to three real numbers so that g is described by
three real parameters. Analogous to the Euler angle
characterization of the three-dimensional orthogonal
rotation group, every matrix of the form (1.1) can be
expressed as a product of three factors in the following
way:

G o= (o el (e o)

x (eim 0 ) (1.2)

0 e

(1.1)

Each factor in this product is itself an element of
SU(1, 1). The three real parameters 4, {, 4’ are not
uniquely determined by « and f. It is enough to say
that, on allowing these parameters to vary over the
ranges

~m<p W<, 0K{<o, (13

we do obtain all elements of the group SU(1, 1); for
{ # 0, every element is obtained twice, while for
{ = 0, the only quantity that is relevant is the sum
of the other two parameters, u + u'.
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The first and third factors appearing on the right-
hand side of Eq. (1.2) are elements of the maximal
compact subgroup of SU(1, 1); this subgroup consists
of all elements corresponding to matrices of the form

e ME 0
( 0 eiu/2)’ —27 < p < 2w (1.4)

There is a two-to-one homomorphism between the
clements of the type (1.4) of SU(1, 1) and the elements
of the maximal compact subgroup O(2) of O(2, 1).
The second factor on the right-hand side of (1.2) is an
element of a certain noncompact subgroup of SU(1, 1);
this subgroup consists of all elements corresponding
to matrices of the form

cosh {/2
(sinh {2

sinh /2

s - . 15
coshC/Z) w<i<e (19)

The elements of the form (1.5) are in one-to-one
correspondence with the elements of a noncompact
subgroup O(1, 1) of the group O(2, 1).

The Lie algebra of SU(1, 1) [or of O(2, 1)] contains
three linearly independent elements, which we denote
by Jy, J1, and J,. They fulfill the following commuta-
tion relations:

—ilJo, 1l = I, (1.6a)
‘"i[Jo,Jz] = -/, (1-6b)
—ilJy, L] = —J,. (1.6¢)

In a unitary representation of SU(1, 1) all the three
operators J,, J;, and J, will be represented by self-
adjoint linear operators. J, is the generator of the
maximal compact subgroup of SU(1, 1) while J; and
Jy are the so-called ‘‘noncompact” generators. In
the language of Lorentz transformations in three
dimensions, namely the group O(2, 1), J, generates
spatial rotations in a plane [the subgroup O(2)],
while J; and J, are the generators of accelerations
(pure velocity transformations) in the two independent
directions. The transformations generated by J, form
an O(1, 1) subgroup of O(2, 1), and similarly for J,.
The Casimir invariant of the Lie algebra of SU(1, 1)
is the quadratic operator Q defined by

Q=Ji+Ji—-J;. (1.7)

Q commutes with J;, J;, and J,, and in any UIR it is
equal to a real multiple of the identity operator.

It is useful to identify the matrices corresponding
to the generators J,, J;, and J, in the defining non-
unitary representation of SU(1, 1), [given by (1.1)],
and the elements belonging to the one-parameter

N. MUKUNDA

subgroups generated by them. We may choose

1 0 i (0
Jo=toa =1 —1); J1=%102=%’(i o’)
_ 0 1
J2= _%10'1= —%1(1 0) (]8)

Let the elements of the one-parameter subgroups
referred to above be denoted by exp (iuJy), exp (inJ)),
and exp (i{J,), respectively. These elements correspond
to the matrices

exp (iudy) — (ew2 ‘? /2), (1.92)
0 e
: N coshv/2  isinhv/2
exp (1) (—isinh v/2  cosh v2 ) (1.95)
. . cosh {/2 sinh (/2
exp (it]) (sinh {2 cosh g/z)' (1.99)

The elements exp (iuJy), exp (ilJ;) belong to the two
subgroups described earlier [Eqs. (1.4) and (1.5)], and
accordingto Eq. (1.2) all elementsof the group SU(1,1)
may be obtained by taking suitable products of such
special elements.

II. UNITARY REPRESENTATIONS OF SU(1, 1)

The single-valued UIR’s of SU(l, 1) have been
determined long ago by Bargmann,® and they fall into
several distinct classes. Each UIR can be characterized
by the value of the Casimir invariant Q, and the
spectrum of eigenvalues of the element J, of the Lie
algebra of SU(1,1). [The value of the Casimir
invariant is not always enough to uniquely specify a
UIR of 0(2, 1), in contrast to the case of O(3).] The
restriction to single-valued representations of SU(1, 1)
implies that the eigenvalues of J; are either integers or
half-odd integers. Within a given UIR, the eigenvalues
of J, differ from one another by integers. Denote the
eigenvalues of Q by g and those of J; by m. The different
classes of UIR’s are the following:

(A) Continuous class, integral case, nonexceptional
interval:

1<g< oo, m=0,+l,42,---,adinf.
(B) Continuous class, exceptional interval:
0<g<i m=0,£l1,42,,adinf.
(©) Continuous class, half-integral case:
1<g< oo, m=+}, % £3,---,adinf.
(D) Discrete class, positive m:
g=k(1—k), k=%1,%,---

5 V. Bargmann, Ref. 3.



UNITARY REPRESENTATIONS OF THE GROUP 0(2,1) IN AN 0O(,1) BASIS

For given k, wehavem =k, k + 1,k +2,---, ad
inf.

(E) Discrete class, negative m:
q=k(1 _k)5 k=%,l,%,"'

Forgivenk,wehavem = —k, -k —~1, -k —2," -,
ad inf,

The UIR’s of types (A) and (B) are together
denoted by C?, those of type (C) by C¥, and those of
types (D) and (E) by D} and D, respectively.
Representations with integral (half-odd integral)
values of m are single (double) valued representations
of 0(2, 1).

The form of the generators J;, J;, J; in each of the
classes of UIR’s listed above can be given by intro-
ducing an orthonormal basis consisting of eigen-
vectors of the generator J,,. Let us denote the elements
of such a basis by |m). Then we have

2.1)

The action of the generators J, and J, in this basis is
given by the following equations:

Jo|lm) = m|m); (m'

my =0, .

Jylmy = 3lg + m(m + D} im + 1)
+ 3g + m(m — D) jm — 1),

me=—gm+mm+nﬁm+w (2.2)

+ 5 la + mm — D1} pm — 1

The value of the parameter ¢, and the range of values
of m, is appropriate to the particular UIR.

We make a few remarks concerning the form of
(2.2). From (1.6a) and (1.6b) it is clear that the
operators J;, J; transform as the components of a
real two-dimensional vector under the O(2) rotations
generated by J,. It is this tensor character of J, J,
with respect to O(2) that results in the selection rules
Am = +1 for the matrix elements of J,, J, in a basis
made up of eigenvectors of J,. In fact, the non-
Hermitian operators J, = J; & iJ; act as raising and
lowering operators with respect to the eigenvalues of
Jo, as is clear from the following commutation
relations:

Vo, J )=y, o,/ )= —J_. (2.3)

We are interested in examining the UIR’s of SU(1, 1)
in a basis in which the generator J; is diagonal. In this
case, (1.6b) and (l.6c) show that under the O(1, 1)
transformations generated by J,, J,, and J; go over
into linear combinations of themselves according to a
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nonunitary reducible matrix representation of O(1, 1):
exp (ilJy): Jy — (cosh {)Jy — (sinh {)J,,
J; — (~sinh {)J + (cosh £)J,. (2.9

We can form combinations of J,,, J, which have com-
mutation relations with J, analogous to (2.3). These
combinations are K, = J, & J;, and we have

o, K.1=iK,, [, K]=—ik_. (2.5

In contrast to the earlier case, we see that the com-
binations J, 4 J; are real linear combinations of the
generators, and that if we were to naively interpret
Jo £ J, as “raising” and “lowering” operators with
respect to the eigenvalues of J,, then under the applica-
tion of these operators, the eigenvalue of J, gets
shifted by +i. This of course does not make sense in
a unitary representation of SU(1, 1) because in that
case J, is a self-adjoint operator with a purely real
spectrum.

For the rest of the paper, we restrict ourselves to
UIR’s of the type (A), namely C¢ with ¢ > 1, and
some of those of type (D), namely D with k =1,
2,3, -. The object will be to examine these
UIR’s in a basis where J, is diagonal, and attempt to
interpret the commutation relations (2.5) in this basis.
The UIR’s C?, g > {, are treated in Sec. 111, and the
UIR’s Dy, for integral k£ > 1, in Sec. IV.

III. REPRESENTATIONS OF THE CONTINUOUS
CLASS

For UIR’s of the class C?, } <g < oo, we may
write

0<s < . 3.1)

These UIR’s can be realized by unitary transforma-
tions in a Hilbert space H of (Lebesgue) square-
integrable functions (L? functions) on the unit circle.®
Elements of H correspond to functions f(¢) of the
real variable ¢ varying in the range 0 < ¢ < 2m.
(This correspondence is of course only up to sets of
measure zero; however, we will not state this re-
peatedly.) In the usual terminology of quantum
mechanics, we think of f{¢) as the “wavefunction”
representing the abstract vector f in the “¢ basis.”
The inner product of an element f with an element
h, and the norm of an element f, denoted, re-
spectively, by (f, /) and || f|, are given by

1 27 -
(ﬁM—E;Ld¢ﬂ@M@,

11l = LD < oo
Let g be an element of SU(1, 1), corresponding to a

qg=1+s%,

(3.2)

¢ V. Bargmann, Ref. 3, p. 613.
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matrix specified by the parameters «, § as in (1.1).
To g corresponds a unitary operator U(g), and the
wavefunction of the vector U(g)f'is given in terms of
that of f by

[U()fNg) = & — B |72 f(p,(¢)),
ot el — ‘iﬁfﬁ:_ilj , 0< 9, wi(e) <2m. (-3)
& — e

The operators U(g), for fixed real s > 0, give the
UIR C!. The forms of the generators J,, Jy, J, are
obtained by specializing the element g in (3.3) to
the matrices of (1.9). One finds:

UafXe) = L L9

i de
Wi Xg) = Fcos ¢ 4 (;f) i3 + is) sin g ().
o N(g) = 4 (;) i} + is) cos @ ().

(3.4
Apart from m-dependent phase factors, the ortho-
normal basis states |m) of (2.1) correspond to the
following functions:

[m) — e,

3.5)

We would now like to convert this form of the
UIR C? into a form where J, is diagonal. This is
achieved by a change of variable as follows.” We
define a real variable g as a function of ¢:

= tan ¢/2: 0<Lp<Lm,
e“=tan(p — m)2: 7L ¢ < 2m

As ¢ varies from 0 to 7 (upper half of the circum-
ference of the unit circle), g varies continuously from
— o to +4co, taking on each value in this range
exactly once. As ¢ varies from 7 to 27 (lower half of
the circumference of the unit circle), g goes con-
tinuously over the range 4 oo to —oo, taking on
each value once only. By this transformation, the
circumference of the unit circle is mapped onto o
real lines. The effect of this mapping on the functions
f(p) must be specified next. If an element fin H is
specified by the wavefunction f(¢) in the ¢ basis, we
associate with it a new wavefunction in the ¢ basis.
We define two functions f,(q), f(g) in terms of f(¢):

fi(@) = [coshgl +#f(g): 0L p <,
filg) = [cosh gl Hf(g): = < 9 < 2m.

7 An alternative, more direct, method has been used by J. G.
Kuriyan, Ph.D. thesis, Department of Physics, Syracuse University
(1966). For details, see J. G. Kuriyan, N. Mukunda, and E. C. G.
Sudarshan, ““The Theory of Master Analytic Representations of
Compact and Noncompact Groups,” Institute for Advanced Study,
Princeton, New Jersey (1967) (to be published).

(3.6)

3.7)
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The relation between ¢ and ¢, for each range of ¢,
is as given in (3.6). Thus each wavefunction f(¢) is
replaced by two functions of ¢, one on each of the two
real lines. The values of f(@) on the upper (lower)
semicircle determine the function f,(¢)[ f,(¢)]. Writing
these as a two-component column vector, we may say
that the correspondence between an element f in H
and its wavefunction in the ¢ basis is given by

et ()

It may be helpful to remark that the change of variable
we have made from ¢ to g is of the expected kind.
The compact generator is associated with rotations of
a circle, while the noncompact one is associated with
translations of a line. So we expect a trigonometric
function of ¢ to be equal to a hyperbolic function
of g.

The scalar product of two elements f, & can be
expressed in terms of the new wavefunctions by
combining (3.2), (3.6), and (3.7). We get

—w0 < g < 0. (3.8)

(0 == [ datF@ha) + Foh@l G9)

We see immediately that H has been expressed as the
direct sum of two Hilbert spaces, H, and H,, each
consisting of all (Lebesgue) square-integrable func-
tions on the entire real line. It is important to realize
that in order to “‘recover” all elements of H, we have
to consider all wavefunctions of the type (3.8), in
which f,(¢) and f,(g) are independently chosen square-
integrable functions on the real line.

The next step is to express the generators J,, J;, J,
as well as the unitary operators U(g), in the new basis.
Proceeding purely formally making use of (3.4),
(3.6), and (3.7), we find:

oS @) = cosh g flfl"’ — it} + is) sinh q/,(q),
- __ f2(4) 1 LN
of1ia) = = cosh g B84 i + ) sinh g,
Uafh(a) = = sinh ¢ 4 lfl") i( + is) cosh 4fi(a),
VoS Tq) = - s inh g - Zfl‘” — it} + is) cosh af(q),
[J2f]r(q) = _. _fr(q)a r= ls 2. (310)
idq

It is simple to write these expressions in block form
(remembering that elements in H are represented
by two-component wavefunctions) and as differential
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operators acting directly on wavefunctions:

Jo =

i

F cosh g 4_ i(} + is)sinh q} ® o,
dq
J, = I:i sinh ¢ di + i(} + is) cosh q} ®o, (3.11)
q

Ja i 44 ® L

At first sight, (3.11) indicates that a// the genera-
tors J,, Jy, Jp leave the subspaces H; and H,, con-
sisting, respectively, of elements with f,(g) = 0 and
fi(g) = 0, invariant. However, this certainly cannot be
the case, since we are dealing with an irreducible
representation of the group SU(I, 1). The point is
that the linear differential operators (3.11) have
been derived in a formal manner starting from
(3.4); these differential operators by themselves do
not determine the self-adjoint operators Jy, J; , J,, but
must be supplemented by statements concerning the
domains of the operators. It is the latter that show
how the subspaces H, and H, are connected. We can
see this in a somewhat simpler way, by directly
expressing the effect of the unitary operator U(g) on
the wavefunctions f,(g). Let us consider the operator
J, first. We specialize g in (3.3) to members of the
one-parameter subgroup generated by J,, as given in
(1.9c). Combining this with (3.3), (3.6), and (3.7),
we find

[Uexp (iLI)f1(9) =f (g + 0, r=1,2. (3.12)

This shows that the subgroup generated by J,, and
hence J, itself, leaves Hy and H,invariant. Considering
next the case of J,, we have to express the functions

[Ulexp (iudo))f1:(9)

in terms of f,(g). This can be done easily, but leads to
rather cumbersome expressions. The essential point
we wish to demonstrate, however, is that the subspaces
H; and H, are not left invariant by U(exp (iuJo)),
and this can be seen directly as follows. In the ¢
basis, we know from (1.9a) and (3.3) that

[Uexp (o)) 1(9) = flp + 1),  (3.13)

namely U(exp (iuJy)) just produces a rotation of the
unit circle on which f(¢) is defined. However, this
means that a portion of the upper semicircle goes over
into a portion of the lower one, and vice versa. In
terms of the two real lines on which f; and f, are
defined, this means that part of one real line gets
mapped onto part of the other, and vice versa. In
other words, the function

[U(exp (iudo))fh(9)
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is given, for —oo < g < Incot }u, in terms of the
function f;, and for Incot 4 < g < o, in terms of
the function f;. In a similar way, one can see that the
function

[Uexp (iundo))f 1:(9)

is specified in terms of f; for a certain range of ¢, and
in terms of f, over the rest. (We have assumed
0 < u < = for definiteness.) It is now clear that
neither the unitary operators U(exp (iuJy)), nor the
self-adjoint generator J,, leaves either H, or H,
invariant. The same can be seen to be true of the
operators U(exp (i»/,)) and J;. Thus, though the
generators (3.10) appear to leave H, and H, invar-
iant, they do not do so because of the nature of the
domain of definition of the generators. For example,
a vector f in the domain of J, has components f; and
fz,in H, and H,, which are constrained by one another
and cannot be chosen completely independently.
These constraints involve f;(¢) at ¢ = £ 0, and
reflect the continuity and differentiability of the
associated function f(¢).

We could now go ahead and express U(g), for the
most general element g in SU(1, 1), by means of its
action on the wavefunction f,(g). This may be achieved
by a series of variable changes using (3.3), (3.6),
and (3.7). The results are however quite unwieldy,
and are not given here. We instead next consider the
question of the spectrum of the generator J,, and
of the nature of the generators J; and J; in a basis
where J, is diagonal.

The effect of J,, as well as of U(exp (i{/,)), on an
element f with wavefunctions f,(g), has been given in
(3.10) and (3.12). By carrying out a Fourier
transformation with respect to ¢, in each of the
subspaces H, and H,, we pass to a basis in which J,
is diagonal. (The process of taking the Fourier trans-
form of a square-integrable function on the real line is,
of course, a unitary operation.) We denote the Fourier

transforms of f,(q) by f.(p)®,

<2}

Fip) = @yt f Q) dg, r=1,2 (.14)

In this “‘p representation,” a vector fis represented by

the wavefunctions f,(p). The scalar product (3.9)
reads

(fih) = 2i f ® plF i) + [A oML (.15)

mJ—o

$ We have added a prime to the wavefunctions £,(p), to distinguish
them from the g-space wavefunctions f,(¢), to which they are related
by a Fourier transformation. These different functions are repre-
sentatives of the same abstract vector f in different bases.
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In this basis, J, is diagonal, since we have

[V2f 1(p) = pf D),
(Ulexp ((LJ:)f1Up) = €*’f (p),
We see explicitly that the spectrum of J, consists of the
entire real line, and in fact every ‘eigenvalue”
appears fwice, corresponding to the two values of the
index r. This is in accord with the statement of
Bargmann,® and is characteristic of the UIR’s CJ.
We consider next the generators J, and J; in this
basis. Since the spectrum of J; is continuous, it has
no normalizable eigenvectors. We can, however,
introduce ““ideal” eigenvectors, subjected to a delta-
function normalization, analogous to momentum
eigenstates in quantum mechanics. We can then say
that the “basis” for H is made up of the ideal vectors

p,ry: —o<p<+owo, r=12, (317
with the properties

3.16
r=1,2. ( )

<p,s r' [ D, r> = (5([7’ - p)ar’r’
J2|p’ r> =p|par>'

A normalizable vector is expanded in this basis by
using its wavefunction as coefficients in the expansion

(3.18)

£

f=1f)=2]| dpfip)Ip. 7). (3.19)
We form the linear combinations K, = J, &+ J; which
appear as ‘‘raising” and ‘“‘lowering” operators with
respect to J, [cf. Eq. (2.5)]; in the ¢ representation,
we have

K, = eﬂ[i‘—’ + i+ is):| © 0, (3.20)
i dq

We would now like to interpret the commutation
relations (2.5), and see how K, behave in the p
representation (J, diagonal). It turns out that the
essential feature in the understanding of (2.5) is
already seen when we consider the simpler operators

K = ™ = lim (K_/—s),

e (3.21)
Jo = (1/i) d/dq.
They obey the commutation relations
J , K(O) — :EiK(O),
[J2, K7l * (3.22)

K? K9 =0,

In dealing with the generators J,, K’, we can drop
the multiplicity label r, and restrict ourselves to the
subspace f;. The operators (3.21) generate the
Poincaré group in one space and one time dimension.

® V. Bargmann, Ref. 3, p. 640.
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In that case, there is no degeneracy index r; however,
in the case of interest to us, namely SU(1, 1), the
index r is essential. In the interest of simplicity, and of
presenting the main points as clearly as possible, we
first examine the operators (3.21).

Let us consider the operator K. In the ¢ basis, a
vector f in H with wavefunction f(g) will lie in the
domain K'® if and only if

iKopp =" e s@ldg < 0 32)

-

in addition to
IfIE = f (@I dg < co.

Clearly, (3.23) imposes severe restrictions on f{g)
as g — —oo. If this vector f'is also in the domain of
Jy, we have

(3.24)

V2 f1g) = (1/D[df(g)/dg). (3.25)

Let us write

KOf = h, h(g) = (). (3.26)

To see the behavior of K'© when J, is diagonal, we
must relate the Fourier transform of 4(g) to that of
f{(g). From the fact that 4(q) is normalizable, we expect
that the Fourier transform of f(g) can be analytically
continued into the lower half of the complex plane.
By means of standard theorems on Fourier and Laplace
transforms,!® we find that if (3.23) and (3.24) both
hold, then we can define a function ¢ of a complex
variable z = p — ix by

R
w(p — i) = (271-)‘% l.i.m.f e (g)dg. (3.27)
R-ox J-R
If -1 < —a=1Imz <0, the integral converges in
the sense of the limit in the mean (l.i.m.) to the
function y(p — ix). For « = 0, (p) is just the Fourier
transform of f(g), while for o = 1, w(p — i) is the
Fourier transform of i(g). If —1 < —a < 0, then we

can even write

#@) = ot [ e dg, 2= p—ix (329)

and the integral is in fact absolutely convergent.
Furthermore, for —1 < Im z < 0, (3.28) defines an
analytic function of z. Finally, the Fourier transforms
of f(g) and A(g), namely y(p) and w(p — i), are
boundary values, in the lLi.m. sense, of the analytic
function y(z) as Im z approaches 0 and —1, respec-
tively, It should also be mentioned that, for —1 <
Imz < 0, 9(z) is square integrable with respect to
Re z = p from — o to 4 o0,

10 D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, New Jersey, 1941), Chap. VI, Sec. 8.
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We conclude that if a vector fin H is such that both
fand K!9fhave finite norms, then, in the p representa-
tion (J, diagonal) the wavefunction f'(p) is the bound-
ary value on the real axis (in the Li.m. sense) of an
analytic function %(z), which is analytic at least for
—1 < Imz < 0; we can then define a new normal-
izable wavefunction, f'(p — i), as the boundary value
(in the Lim. sense) of w(z) as Imz— —1; and we
have

[KOfT(p) =f'(p — D).

The fact that both f'(p) and f'(p — i) are boundary
values in the L.i.m. sense of the analytic function y(2)
is consistent with the fact that wavefunctions can be
specified only up to sets of measure zero. However,
this is all that is needed to completely specify the
abstract vector in the Hilbert space. Written in terms
of the ideal eigenvectors of J,, we have

KO |1y = KO f_ " ') 1p) dp,

(3.29)

~[re-vwa 630

If [ f) is also in the domain of J,, then we can write

51y =3[ s ap = [ o 1 an.
(3.31)
Thus we see that when J; is diagonal, it is meaningless
to talk of the effect of applying the raising operator
K9 to an ideal eigenvector of J,. K{* may be applied
only to those “linear combinations” of the ideal
eigenvectors of J,, which are vectors of finite norm,
and are such that the wavefunctions f’(p) appearing
in the linear combination permit a unique analytic
continuation into the lower half of the complex plane
up to at least unit distance away from the real axis.
Then the effect of K is given by Egs. (3.29) or
(3.30). If a vector |f) is such that both J, and K"
and their products may be applied to it, then we can
use Egs. (3.30) and (3.31) and check explicitly that

e, KOV = iKE 1S, (3.32)
The situation is similar for the case of K'©, except
that analytic continuations of wavefunctions into the
upper half plane are involved. As for the operators
J{ and J{”, they may only be applied to states with
wavefunctions permitting analytic continuations into
both the upper and lower halves of the complex plane.
(The eigenvalues of J, lie along the real axis in this
complex plane!)
Returning to the more complicated but realistic
case of the operators K., or J, and J;, we do not
examine them in any detail, but limit ourselves to a
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few comments. In this case, two new features appear,
namely we have the multiplicity label r, as well as the
differential operators d/dg in J, and J;. However, the
basic feature that the domains of J, and J, consist of
states with boundary values of analytic functions as
wavefunctions, in the basis where J, is diagonal,
remains, and it is this that permits a simple under-
standing of the commutation rules (I1.5).1! Operating
formally with (3.20), we find

K.S1p) = % (p —s— ’5) fip = 0,
(3.33)

(K_f1i(p) = + (p +s+ é) fip + ).

(The plus sign corresponds to r =1, the minus
sign to r = 2.) These equations may be thought of as
the equivalents, when J, is diagonal, to the equations
that are valid when J, is diagonal:

Jom) = (£im + s + §i)jm £+ 1).

These are the same as (2.2) except for some phase
changes in the basis states. Note also that (3.33) is a
statement using wavefunctions, while (3.34) involves
basis states. More details on these and related points
will be discussed elsewhere.

(3.34)

IV. REPRESENTATIONS OF THE DISCRETE
CLASS

In this section, we consider the UIR’s of SU(I, 1) of
the type D, k =1,2,---. These may be realized
via unitary transformations in a Hilbert space H,
of analytic functions of a complex variable z.?
Elements of H, correspond to functions f(z) which are
analytic and free of singularities in the open unit
circle |z| < 1. The scalar product and norm are defined
as follows:

(fi by = 2 = ! f (1 — |22 FDh(z) d*,

£l = (L < oo

Since the definition of the inner product depends on
k, we have added the subscript k to the expressions
above. The integration extends over the interior of
the unit circle. The unitary transformation U(g)
representing an element g of SU(1, 1) is given by

(4.1)

[U(@)f)) = [ + iﬂz]‘2’°f(;—zf£)- 4.2)

[The connection between g and «, f is given in (1.1).]
The expressions for the generators can be found by

11 Cf. the remarks by E. C. G. Sudarshan, Ref. 1.
12 Y, Bargmann, Ref. 3, p. 623.
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taking g to be the special elements corresponding to
the matrices (1.9). They are

Yo/1(2) = kf (@) + z(df(z)/dz),

WifI(2) = —ikzf(2) + Hi(l — 2°)(df(2)/dz),

Mef (@) = —kzf(2) — 11 + 22)(df(2)]dz).
The orthonormal basis states |m) of (2.1) correspond
to positive integral powers of z:

{m) ~ [ (k + m — D! ]-zm"‘,
(m — k) 2k — D!
m=kk+1,---. (44)
It is convenient to effect the diagonalization of J,
in two stages. In the first stage, we change the complex
variable z to another complex variable o, by the
formula

(4.3)

o — i
w4+ i ’
The purpose of this transformation is to map the
interior of the unit circle in the z plane onto the open
upper halfplane in w:
lzZl<1l=Imw > 0. (4.6)

The circumference of the unit circle in z is mapped
onto the real line in w: if we write z = ¢'%, then
—47 < ¢ < 4w corresponds to 0 < w < o, and
im £ ¢ < §» corresponds to —w < w L 0. The
imaginary z axis, z = ip, —1 € p < 1, goes into the
whole of the positive imaginary axis in w.

The change in wavefunction from an analytic
function f(z) to an analytic function in  is defined
by18

L z+ i

—1i

zo== ® ==

(4.5)

z— i

1

J (@) = fi(w) o+ i)%f(ff).
[Both wavefunctions f(z) and fi(w) represent the
same abstract vector fin H;.] Using (4.7), we express
the scalar product and the generators in terms of
wlt:

(), = k=1 42k~1fwd(Re ©)
kil oy

(4.7)

x f " d(Im o) F@) hy(@)(Im )2, (4.8)

[ofh(®) = —ikefyw) — §i(l + o) d‘ﬁf—),

VL) = —ikafi@) + 3i(l — o é{%} (49)

VoS h@) = ikfy() + in 2
dw-

13 We have added a subscript to fi(w) to distinguish this funetion
from the original function f(z).

14§ M. Gel'fand, M. L. Graev, and N, Ya. Vilenkin, Generalized
Functions (Academic Press Inc., New York, 1966), Vol. 5, Chap. VII,
give the discrete representations in this form. The negative integer s
used in thii reference to label the representations is related to & by:
s=1-—2k,
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It is clear that the wavefunctions f;(w) corresponding
to vectors in H,, are analytic and free from singularities
in the upper o half plane. As a matter of fact, in
addition to being analytic for Im w > 0, the admis-
sible functions f;(w) must obey certain extra conditions,
related to the behavior of fi(«w) on the real axis and
at the point at infinity.*®

In order to effect the diagonalization of J,, we need
to use a special representation of the functions fi(w).
For this, we momentarily restrict ourselves to a dense
subset of H, which would correspond, in the descrip-
tion in terms of the variable z, to functions which can
be analytically continued outside the unit circle [in
addition to being normalizable in the sense of (4.1)].
For example, such a dense subset of H, is provided
by the set of all finite power series in z, or the set of
all entire functions of z. The normalizability of the
corresponding functions fi(w), together with their
analyticity properties, imply that the fi(w) can be
represented for all w in terms of their boundary
values as w approaches the positive real axis from
above. This is achieved via the Mellin transform of
JSi(w).}® By using this representation, we can rewrite
the expression for the scalar product and the norm of
elements in H, in a form which involves only the
values of fi(w) on the positive real axis. Having
obtained this form, we can then recover all of H,
from the dense subset of H, by the standard method
of completion. Explicitly, then, f;(w) may be repre-
sented in the following fashion:

filw) = 1 f dp w”’"‘f filx + ie)x* " dx.
27 Jew 0
(4.10)

Here, we use the variable x when o approaches the

positive real axis from above, and the complex power

of w is defined unambiguously for Im & > 0 by the
convention:

w

Inw = In|o| + iarg o,

ip—k _ e(i;o—k) In @

0 <argow <o (4.11)
Actually, the variable x is not the most natural one
for our purposes. We instead use ¢ defined by
—w < g < o, (4.12)
so that the positive real x axis corresponds to the
entire real axis in g. At the same time, we use in place

of fi(x + ie) a new wavefunction in terms of ¢, given
by

x = %

F@) = #i(x + o). (4.13)

The result of all these manipulations is to yield an

15§, M. Gel'fand et al., Ref. 14, Chap. VII, p. 423,
18 E, C. Titchmarsh, Introduction to the Theory of Fourier Integrals
(Oxford University Press, London, 1948), p. 46.
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expression for the analytic functions f;(w) in terms of
the new wavefunctions fi ©@:

o) 0
fw) =5 [“apot [ dg i@ @)
27 J-w —®
We must now use (4.14) to write the scalar product
of two vectors in H, in terms of their wavefunctions in
the ¢ basis. It is, however, instructive to first evaluate
the forms of the generators J;, J,, and J,, as they act
on wavefunctions f{g), and then rewrite the scalar
product. For this purpose, we need to restrict our-
selves to wavefunctions f{(¢) lying in the domain of one
of these generators such that its Fourier transform
permits certain analytic continuations into the complex
plane. Such wavefunctions of course constitute a
dense subset of H,. We find quite easily:

[Jof1 (9) = (1/i) cosh q[df(g)/dq) — ik sinh ¢ (g),
[Jif1"(q) = i sinh q[df(9)/dq] + ik coshgf(g), (4.15)
[f1 (g) = (1)) df(g)/dg.

Before going any further, let us remark that these
forms for the generators are practically identical to
those in (3.11), except that the parameter s in the
latter equations has been “‘analytically continued”
to a complex value —ik + }i. Thus the representation
of vectors by wavefunctions in the g variable, as
introduced above, is the analogue for the representa-
tions Dj to the g representation we found for the
representations Cj in Sec. IIL.

The generators (3.11) for the C? representations
are symmetric (i.e., Hermitian) operators with respect
to the ordinary local scalar product in g space, Eq.
(3.9). However, this is so only as long as s is real,
and we should expect that the metric in g space, with
respect to which the generators (4.15) are formally
Hermitian, will be a nonlocal (though positive definite
and translation invariant) one. We now proceed to
work out the expression for the scalar product. We
use the representation (4.14) in (4.8), and use
polar coordinates for the w integration in (4.8).
With the aid of the formula'?

f " 46 ¢ (sin Bt = 7 € Lk = 1)
’ #4711k + ipD(k — ip)’

(4.16)
we derive

(e = @ E2O[™ o0 + iy — ipyie=

X { f_idq’ ei”“'m}{f_idq e"'”"ﬁ(q)}. 4.17)

17 Bateman Manuscript Project(CaliforniaInstitute of Technology,
Pasadena, California, 1953), Vol. 1, p. 12.
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It is tempting to try and write this in the form

=" da' [ daflaKeg — D@, (418
with the kernel K(g) being the expression

dp
D(k + ip)T(k — ip)’
(4.19)
If this were possible, then the kernel K(g) would be
the representative in ¢ space of a Jocal, positive

definite metric in p space with a real, positive definite
weight function p(p), where

K(g) = #1120 f " v
ks —

p(p) = 4+ F%") (€T (k + ipT(k — ip). (4.20)

However, this way of writing the metric in ¢ space,
namely as in (4.18), must be viewed as just a formal
rewriting of (4.17), since p(p) increases too fast
as p— —oo to allow K(g) to exist as an ordinary
function. Strictly speaking, then one just finds the
forms (4.15) for the generators, together with the
metric (4.17), in the ¢ basis.

In spite of this situation in the g basis, the diagonal-
ization of J, can be effected, and as a matter of fact
the scalar product (4.17) already appears in a form
that can be directly interpreted as a positive-definite
local scalar product in the p space (J, diagonal). We
define the p space wavefunctions by

1
m?

and the scalar product is

¢ "f(q) dg,

—

f'(p) = 4.21)

= 27] s T @G dp. (422
J, is diagonal in this basis:

af1(p) = pf (p). (4.23)

It seems that the existence of a complicated expression
for the scalar product is forced on us if we wish to
have the generators in as close a form as possible to
the case of the UIR’s CJ, namely in the form (4.15).
It should be possible to introduce a basis (¢ basis,
say), with J, being the generator of translations in ¢/,
in such a way that the scalar product of two wave-
functions is given by the usual local expression, i.e.,
with no nonlocal kernel appearing in the ¢’ integration.
However, in such a basis, the generators J, and J,
would be considerably different from (4.15). We
hope to discuss these questions, as also the precise
properties of the permissible wavefunctions f(g), and
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the nature of the Fourier-transform operation (4.21)
in the context of the scalar products (4.17) and
(4.22), on another occasion.

We conclude by noting that according to the
considerations above, the spectrum of J, consists
of the entire real line, and that every eigenvalue of
J,, occurs just once. This is in accord with the state-
ment of Bargmann'® and is characteristic of the
representations of the discrete classes, Dki. Finally,
the effects of the generators J, and J; on a wavefunction
/’(p) which can be analytically continued in p is given
by equations exactly like (3.33) except that s is
replaced by —ik + 4i.

CONCLUSION

In this paper, we have attempted to cast some of
the unitary irreducible representations of the group
SU(1, 1) into a form in which the generator of a
noncompact subgroup O(1, 1) is diagonal. For the
representations of the continuous class, we have
recovered the result that the spectrum of this non-
compact generator consists of the entire real line, and
that each eigenvalue appears twice; for the representa-
tions of the discrete class we have found the expected
result that the spectrum of the noncompact generator
is again the real line, but with no multiplicity of
eigenvalues. We have also seen that when the non-
compact generator is diagonal, the domain of the
other generators of SU(1, 1) consists of vectors whose
wavefunctions are boundary values of analytic

18 V. Bargmann, Ref. 3, p. 640.
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functions, and thus permit a unique continuation into
the complex plane. In this way we have been able to
understand the ravher unusual commutation relations
which at first sight suggest that the eigenvalues of a
self-adjoint operator could be shifted by an imaginary
amount 1.

It is interesting to note that in a suitable basis
related in a simple way to the diagonalization of a
noncompact generator, the generators of SU(1, 1)
in both the continuous-class representations and the
discrete-class representations, (3.11) and (4.15), have
the same analytic form, the only difference being
in the parameter related to the Casimir invariant of
the representation. In a sense, this is analogous to the
fact that in the O(2) basis, the matrix elements of the
generators can be given in a universal fashion, valid
for all classes of representations [Eq. (2.2)]. This is
in the spirit of the method of the Master Analytic
Representation.!?
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The spin-weighted functions introduced recently are shown to be eigenfunctions of the total angular
momentum for appropriately defined geometric objects on the sphere, namely the Pensov objects.

1. INTRODUCTION

N a recent work! it has been found useful to intro-

duce a class of functions ,Y;,, defined on the
sphere. The ,Y;, can be considered as generalized
spherical functions. These functions appear also in
the theory of representations of the rotation group.®?
Our aim is to formulate a geometric theory of the
sYim. Our method is the following: The group of
rotations is characterized by three operators gener-
ating infinitesimal motions and by their Lie algebra.
Realization of the operators is not unique. A general
method of constructing various realizations consists
in the following: We choose an arbitrary geometric
quantity on the sphere and calculate the Lie derivative
with respect to generators of infinitesimal motions
(i.e., Killing vectors). Commutation relations of the
Lie derivatives do not depend on a geometric quantity,
but only on the generating vectors.*® Accordingly,
every geometric quantity ¢ (indices suppressed) on
the sphere generates a particular realization of the
Lie algebra of the group of rotations. We can associate
with every realization a set of orthogonal functions,
namely the solutions of the eigenvalue problem

—(£2 + £+ £2)¢ = i,
§1 2 &3

~if ¢ =04, (1.1)

where £, denotes the Lie derivative with respect to

(n’)
Q =

[AY + AF — (4 — AD] O + AY — AT — (4T + 4Y)

the nth Killing vector. If for example ¢ is an invariant,
Eq. (1.1) determines the usual spherical functions.
Accordingly, our problem is to identify that particular
geometric quantity which generates the ,Y,,. It

follows from the nature of the ,Y,, that it should
be a one-component geometric quantity.

2. THE PENSOV OBJECTS

Classification of one-component differential geo-
metric objects has been given by Pensov.® He finds
that in V, (and only in V},) there exists nonlinear
objects with the transformation rule®

(n)
AT Q + 4y

(n) ’
AT Q + 47
where A7 = 9,x?. The ratio of the components of a
contravariant vector is an example of the object .
We shall call objects similar to  the Pensov objects.
Any function of the form

_avt 4+ b°
cv' + do?

(n')
Q =

where v* are contravariant components of a vector
and ad — bc # 0 is also a geometric object. The case
a=c=1,d= —b=i= —1}is particularly inter-
esting. The transformation rule of the object in this
case has the form

(n)

= . Q2.1

[A] — A5 + (A7 + A1 Q + A + 47 —i(4) — 47])

It is a well known fact that every two-dimensional
Riemannian space is conformally flat. Consequently,

* Supported by Air Force Office of Scientific Research. .

t On leave from the Institute of Physics, Jagellonian University,
Cracow.

1 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

2 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich,
and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967).

31, M. Gel'fand, R. A. Minlos, and Z. Y. Shapiro, Representations
of the Rotation and Lorentz Groups and their Applications (The
Macmillan Company, New York, 1963), p. 83.

4 J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954),

. 110,

P 5 In accordance with the notation of J. A. Schouten, Ref. 4,
p. 12, the superscripts (1) and (n') refer the object Q to the co-
ordinates x® and x™’, respectively.

we can without loss of generality assume the line
element of V, to be of the form

ds? = f(x', x3)[(dx")? + (dx?)?] 2.2)
and restrict our transformation group to the subgroup

of conformal motions of the line element (2.2). Con-
formal motions satisfy the Cauchy-Riemann condi-

tions . 20 v 20
AV =AY, AL = —A7.
In this case the transformation rule (2.1) assumes the
form ) gV g
=— 5 Q.
A; + iA7
8 G. Pensov, Compt. Rend. Acad. Sci. URSS 54, 563 (1946).
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This means that with respect to the subgroup of
conformal motions the object Q is linear and homo-
geneous, i.e., is a geometric quantity.” It is clear that
we can introduce a set of generalized quantities
Qy = 2, where s is an arbitrary number, with the
transformation rule
(6) — (A}’ - iA%I)S/Z (6(8)_
(s) A} + iA?

3. THE COVARIANT AND LIE DERIVATIVES
OF PENSOV OBJECTS

It is convenient to introduce a complex coordinate
system
yl — xl + ix27 yl’ —_ xl’ + l'x2"

yE=xt —ix? ¥ =Y —ix?.

In a new coordinate system the Cauchy-Riemann
conditions assume the form Al = A¥ =0, where
now A7 = d,y". The transformation rule of the
object €}, has the form

(n") A2’ s/2{n)
Q - (—2) Q(S) .

31
A (3.1)

Let us differentiate Eq. (3.1) with respect to y*.
Taking into account the Cauchy-Riemann conditions
and the well-known formula

242

axr
where I' is the object of parallel displacement, we
obtain

i A A oq4m 4V
Fu’é’Al’ - FuvAu’Ab’ »

(n’) s R (n')
_ S o o
0 Quy = S (T, = T, Q

N Ag' 8/2 (n} s L 0 (n)
- Au’(_r) |:a;. Q — = (T — 1% Q(s)]
A 2 .

Hence, we can define the covariant derivative of the
object £, as

V,Q =08,Q — ;mu - T3) Q.

The Lie derivative of the object €2, is easily found
to be

£Q = §0,Q, + ;(3151 — 0:5%) Q.
§
The Lie derivative of a Pensov object is a Pensov

object with the same index s, as it of course, should be.

4. OPERATORS OF ANGULAR MOMENTUM

Having established the form of the Lie derivative
of Pensov objects we can define the operators of

7 J. A. Schouten, Ref. 4, p. 68.

A. STARUSZKIEWICZ

angular momentum
J £2(s) = —i£ Q(sb
n &n

where &, n =1, 2, 3 are the generators of infinitesi-
mal motions of the sphere (i.e., Killing vectors).
Equation (1.1) is in this case an eigenequation for the
total angular momentum. It turns out that solutions of
this equation are the ,Y,,, up to a constant factor.

To prove this it is convenient to introduce the co-
ordinate system used in Newman and Penrose’s
paper,! namely,

Y= =¢%cot}, y*=1{= e ‘*cotif,

where 0 and ¢ are the usual spherical coordinates.
In this coordinate system,

(£ +i ?)Q(s) = —i(cga—ag +§Z+ S§>Q<s),
(? — i ';£)£2(s) = I(Eaé-_{‘ Zzaié—_ SZ)gz(s)’
St w2 .x a _-a

fQ(s, = l(éé—é - éa—z-i- S)Qm-

Using these expressions, one can easily calculate the
left-hand side of the first equation (1.1)

- (£2 £t £2) Q)
o 3 .0
=|—-Q2PP — + 2sP({ = - = 25°P | Q,
R sy 5P (L = Ugp) + 2P|
— 70,

where 2P = 1 4 {{. The solution of this equation
[and of the second equation (1.1)], regular for { — oo,
can be written down by means of the hypergeometric
function

m/2 |s+mi2| ; | m/2|
o= () ) ()
{ 2P 2P

F(a,b;|2s+m|+ 1;—1—), (4.1)

2P

where m is an integer, a +b =2y + 1, ab=
y(y + 1) — 2, and y = |s + Im| + |im]. It should be
noted that s as a geometric characteristic of a Pensov
object can be an arbitrary number. However, the
solution (4.1) is finite everywhere if and only if Q,
is a polynomial. It is easy to see that this can be the
case for positive and negative m if and only if s is an
integer or an integer plus §. Accordingly, Pensov
objects as geometric quantities can have an arbitrary
index s, but they can be interpreted as quantum-
mechanical wavefunctions only for s equal to an
integer or an integer plus §.

It is easy to see that polynomial solutions (4.1) are
the spin-weighted functions up to a constant factor.
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A method for doing distorted-wave Born-approximation calculations for nucleon transfer reactions
is presented. This method is designed to be used when the zero-range approximation cannot be made.
The method has the advantage that only simple quadratures need be performed. When recoil effects are
negligible, our method leads to a particularly simple form. The technique developed here can be applied
to the evaluation of the six-dimensional integrals that result when the general two-body interaction is
considered. Thus it may be usefully applied to nuclear-structure calculations when it is desired to use
wavefunctions which are not harmonic-oscillator eigenfunctions.

I. INTRODUCTION

ISTORTED-WAVE Born-approximation calcu-
lations of the nucleon transfer reaction amplitude
are only easily carried out when it can be assumed
that the interaction potential binding the transferred
nucleon in the initial or final state is of zero range.
This approximation is probably adequate for deutron-
stripping reactions. However, for reactions in which
a nucleon is transferred between two heavy nuclei,
the zero-range approximation cannot be justified.
Consider a nuclear reaction in which a nucleon N
is transferred from nucleus /= A4 + N to nucleus
F = B+ N. Then the distorted-wave Born-approxi-
mation (DWBA) amplitude is

A = fds" NA de"IB(Diﬁ)‘(KA ) * dap(typ)*

X VAL\'(rAAV)qSAN(rA.\")(D(It}(KI ), (1D

where ¢, is the initial nucleon bound state, ®) is
the relative-motion wavefunction in the incident
channel, and ¢,, and @), are the corresponding
quantities for the final bound state and outgoing
channel. By setting V,y¢,y equal to a delta function,
the transition amplitude becomes a three-dimensional
integral. This can be reduced to a sum of one-dimen-
sional radial integrals by expanding all the wave-
functions in spherical harmonics and carrying out the
angular integrations. Without this zero-range approxi-
mation, we are left with a difficult multiple integral to
perform. A procedure for carrying out this multiple
integral has been presented by Austern et al.!

We wish to suggest an alternative approach to the
evaluation of the finite-range DWBA amplitude. In
our method V4 y¢ 4y is expanded in an infinite sum of
products of functions of r; and functions of r,p or
*This work supported by the Atomic Energy Commission.

1 N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler,
Phys. Rev. 133, B3 (1964).

ry;. This leads to an expression for the amplitude
A;p which is an infinite sum of products of one-
dimensional radial integrals. This sum converges
rapidly enough, we believe, to make this a practical
method for calculating the transition amplitude.

There have been other finite-range treatments of
the nucleon-transfer amplitude, but these have not
been based on the unmodified DWBA. Breit® has
given a semiclassical treatment. Dar and Kozlowsky?
and Dodd and Greider* have given treatments based
on the diffraction model. Buttle and Goldfarb® have
devised a DWBA treatment for the process in which
the bound-state functions are approximated by their
asymptotic forms.

The technique developed here can be applied to the
evaluation of the six-dimensional integrals that result
when the general two-body interaction is considered.
Thus it may be usefully applied to nuclear-structure
calculations when it is desired to use wavefunctions
which are not harmonic-oscillator eigenfunctions.

In Sec. II we show how a function of r; — r, can
be expanded in an infinite series of products of func-
tions of r, and functions of r,. The functions used in
the expansion are modifications of the harmonic-
oscillator eigenfunctions. The expansion coefficients
have a relatively simple form. The DWBA expression
for the nucleon-transfer amplitude in the no recoil
limit is given in Sec. III. The interaction is assumed
to have finite range. It is shown that the evaluation
of the amplitude requires only the performance of
simple quadratures. Section IV is devoted to a dis-
cussion of how recoil effects might be included. In
Sec. V we examine the zero-range limit of our ex-
pansion for the transition amplitude. We find that it

2 G. Breit and M. E. Ebel, Phys. Rev. 103, 679 (1956); G. Breit,
ibid. 135, B1323 (1964).

8 A. Dar and B. Kozlowsky, Phys. Rev. Letters 15, 1036 (1965).

1 L. R. Dodd and K. R. Greider, Phys. Rev. Letters 14, 959
(1965).

5 P.J. A. Buttle and L. J. B. Goldfarb, Nucl. Phys. 78, 409 (1966).
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does not seem to be simply related to the unexpanded
zero-range amplitude expression.

II. THE EXPANSION METHOD

Our basic problem is to find a way of expanding an
arbitrary function of r; — r, in a sum of products of
functions of r, and r,. The only function F possessing
the property F(r, — r;) = F(r,)F(—T,) is the exponen-
tial. Therefore we start by Fourier analyzing the given
function ®(r, — r,):

(D(rl —_ rz) =Jd3keik~r1e—jk.r2fd3 (

Next let us expand the plane waves in the integrand
in terms of spherical harmonics and perform the
angular integrations:

£imy
O O e f dkk®

mmyma

X Je(kry) jo(krs) L wdrrzj[(kr)fdQY;"(Q)*(D(r), (3a)

where Y} is the normalized spherical harmonic func-
tion, j, is the spherical Bessel function, and

Z,
fl,r:l — bbb 8[(2/2 + DQC + 1)]%
I 4m(24, + 1)

X (Lalmom | Lot lsmX(£of00 | £,£,0). (3b)

(6Lamim, | £45¢m) is the vector addition coefficient.
Now we expand the spherical Bessel functions
Jp, and j, in terms of a discrete set of functions

Fli (o, ry):
Jelkry) = Z ¢! oy, kIBYFbila, Biry). @
The result is

O, — 1) = 3 Y(Q)Y™(Q)Fo(y, fir)

/1m1
x (g, faro)| Loy f drrgthlsr) f dQ Y™(Q) (),
im JV°
(5a)
where
olld © L2 ‘0 k k
ity = | dkk¥per)Ch (g, ~\ € (o, ) (5b)
0 ﬁl 132

We need to choose the complete set of functions 5
to be such that §#1£2(r) has a convenient form.

A set of functions which seems to be well suited to
our needs are what we will call the modified harmonic-

Fh(o, r) = [
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oscillator (MHO) functions

M+ £+ 31,
nIl(£ + 3) } ()

eI (s £+ 35 67, (6)

where T" is the I' function and ,F; is the hypergeo-
metric function. F¢(1, fr) is the radial harmonic-

oscillator function.
The MHO functions enjoy the biorthogonal property
proved in Appendix A:

f dp p°5(a; )FL2 — 4, p) = 0pa. ()
0

This property is a simple consequence of the ortho-
normality of the radial harmonic-oscillator functions.

The spherical Bessel function expansion coefficient
is evaluated in Appendix B. There it is shown that

Cl(a, k/B)
—p f dr rykr)FL2 — a, Br)

antle k
— DL i T T, a P{L By — 1
( ) ( ) ( )n+[/2+2 o ( [3[0((2 - 0()] )

®)

Substitution of Eq. (8) into Eq. (5b) leads to an
integral which is evaluated in Appendix C. The result
is the following expression for G:

ny  na sim 1B
S0h(r) = > 3 sambyfams T2, B, (9)
§1=0 3,=0 n/ﬂ
where
n=si+ s+ W4+ 6= 0) (9b)
_ [ Ae—wBe -
? {2[5f(2 — o) + F52 — “2)]} ’ 0
51"1/1131“1
Sznzfzﬂzaz
nép

N [n'T(n + £ + 3)n,!
_ (7} X D(ny + 4+ Hna! Ty + 4, + DI
B (2) 2(ny — s)!(ny — sp)!s;!s,!
x (s + 4 + (s, + 4+ 3)

(—a)™ " —ap)(2B)* R
Q- al)m+sl+t’1+%(2 _ a2)"2+32+[2+%ﬂfsl+ll ﬂ§82+[2 :

(9d)
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Thus Eq. (5a) can be written
Or, — 1) = 3 YU(Q)YEHQ)*Fhi(on, fury)

mynyl
famangm

; £ymy 51”1f;l31°‘1
Fon(ota, Baro)\ fams | 3, { Sahtaloflats
fm ) ndp
x f dr P52, Br) f dQ Y (Q)*O(r).
0
(10)
Suppose we had chosen to expand j,, and j, in terms

of MHO functions instead of expanding j, and j,,.
Then in Eq. (5a) F%(ap, fors) would be replaced

by F¢(«, fr), and S441¢x(r) would be replaced by
Q{ff’;/('é) =f dk kzjlg(er)eflll (al ’ k ) e[ (a l_() * (SC)
0 By p

Evaluating Eq. (5¢) as we did Eq. (5b) would then
lead to the following alternative form for the expan-
sion:

cD(rl —Tp)
Z Y7, I(Ql)YZ (92)*377{;(0(1 > 131"1)37[ 2(2, Bars)
[1m"::lli91
LHm )| snéfBa
X { Lamg [\ si11f1 1%y
‘m nytofs
x J dr PF(a, fr) f dQ Y PQ*O(), (11a)
where now
n2=5+51+12‘(/+ 4 — ), (11b)
_[_pe—wpe—a)
P {2[/32(2 —a) + fI2 — al)]} W

Equation (11a) is the expansion of ®(r; — ry) which
we will apply to the calculation of the DWBA
nucleon-transfer-reaction amplitude. Note that

i = 23

n2f2/32
(1,1 T (g + 4y + PIT(n + L4 D Ty + 4+ DI
sty — s DG+ 4+ Ds i — s+ £+ 82

(2B aetintt (o)™ (=)™
ﬂ§s1+t’1ﬁ2s+l’ Q- al)sl+n1+l,+% 2- oc)s+7w)—l’1+%
(12)

and
snéBo nnfp0
sim6 0| = anl,slén,s mn,¢16,01. (13)

nzfzﬂz nytsfs
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FiG. 1. Coordinate vectors for the nucleon transfer reaction
I+B=(A+N)+B—>A+(B+N)=A4+F

III. NUCLEON-TRANSFER
AMPLITUDE (NO RECOIL)

We return to Eq. (1) for the reaction amplitude.
In Fig. 1 the various coordinate vectors are displayed.
We will use r;,; and ryp as our independent variables.
Then r 5 and r will be given by

. M+ My M\(MB+M\+MA)r
AF = — - I'tp— NB»
M, M, M, + M,

(14)
My+ M
Tunv = Y —d (75 — Tyg) (15)

M,

where My is the mass of particle X. Writing Eq. (1)
in terms of the independent variables gives

Ay = ( )fdarVde rIB(D‘fllf

M\ *
X | Ky, M, I — (1 + ) NB)
( M, Mg

M,
M
X énp(ryp)*Van (_I (rp — rNB))
M,
& (D("}-) 16
X ¢un (rrg — rnp) | DKy, 1p), (16a)
M,
where

MI=MA"+MA! MF'=MN+MB‘ (16b)

We first consider the case where My K M, M.
Then we can neglect the recoil of 4 and set r,p ~
(MM )r, ~ (Mp/Mp)t;z. Now we use Eq. (11a)
to expand V,yé,y. These two steps lead to the
following expression for the reaction amplitude:

Agp = 3 Ak, Ky, B35 (a, B0, B,

lamang
17a
where (172) :

Abmm(K Ky, By

fd3r(D (KA’ M—
Mg

) Fh2, Bur) YI(Q)*

OYLK, 1), (17b)
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3627"2"2(“5 ﬂa %y, 181)

£imy 3
Z Ezrﬁ“ TW\Ifzml(Oh po* { 2"’!2}(%)
ell":.’mm {m 4
sndfu
X {sy;mifia g, (17¢)
na/zﬂz
8, = { B2 = B2 ~ @) }% (17d)
20p%2 — o) + A2 —apl)
S=n,— 58 — 3+ 44 — &), (17¢)

l’mn(“ B)
M
=jd3" VAN(%I[_I ") ban (ATI ") Y (Q)*5 5 (, Br),
A A
(17f)

TNE (o, By) = f &r $up(NYF QT ooy, Bur).
(17g)

The quantity #%72" is just the sort of integral we
get when we make the zero-range approximation. So
the evaluation of the Afyr2™’s presents no problem.
The integrals 3~ and 3% can be reduced to a sum
of one-dimensional radial integrals once we have a
spherical harmonic expansion of Vy ¢y and ¢yy;.
Thus the evaluation of the individual factors in our
expression can be readily performed.

The usefulness of our method hinges on the range
of values of n, n;, and n, we must include in our sum
to get an adequate representation. Clearly, if Vy by,
and ¢y, are modified harmonic oscillator functions

VNA¢V4 =Yi5 7, (2 — o, Br),
byp = Y;nl fh (2 %y, fif)s

then there will be an upper limit of n; + n’ + (/] +
' — 1,) on the sum over n,, while the sum over »
and n, is restricted to one term. In general, we expect
that the values of «, 5 and «,, 8, can be chosen so
that 3¥4 and 37 will be nonnegligible only for a
few values of n and »;. Again, the sum over n, can
have no more than [n, + n 4+ (I, + I — 1,)] terms.
For the choice 2 = «, = 0 there will be a unique value
of n, corresponding to each pair #, n,. We conclude
that this expansion method appears to be a practical
method for carrying out finite-range DWBA calcula-
tions for nucleon-transfer reactions.

IV. RECOIL EFFECTS

In neglecting recoil we replaced r 45 by(Mp/Mp)r;p
in the reaction amplitude 4;5. We chose (Mp/Mg)r;p

T. SAWAGURI AND W. TOBOCMAN

instead of (MM r;; or just r;z, which are all
equal to within terms of order M, /M, so that our
expression for A;; reduces to the zero-range result in
the limit as the range of V' y¢ v becomes small. For
this reason we might expect that our results for Az
will be pretty good even when M /M , is not extremely
small if the range of Vy ¢4 is not so large and we
approach the zero-range regime.

Dodd and Greider* have suggested that one can
retain some measure of the recoil effect by using the
substitution

(D‘El_lv)‘(KA s T4F)
x exp {iK - (r;p —

~ (I)A;_F)(KA , (MM p)r;g)
p) MMy + M /M M F]}'
(18)

Inserting this into our formalism leads only to a change
in the definition of §¥:

= oo

xexp[ MyMy + Mg A-r}

M Mg
X Y (Q*F(x, fr).

For most cases the §;." given by Eq. (17f) is non-

vanishing only for a small range of / values. The

d;t given by Eq. (19), on the other hand, will allow

a considerable spread in / values, which can have

an important effect on the final result.

Cases where both finite-range effects and recoil
effects must be handled carefully lead to a much more
complicated expression. For such cases we take r p
and r; to be our independent variables. Then we use

(19)

Iy = Aap = Tap)s (20a)
oy = Ag(uptar — Yrp)s (20b)
M /M M
Ay = E— s Mg = -1, (20c)
MgM; — MzM, M,
MM M
}-B — BYI . Hp = F (20d)

MMy — M My, My

In terms of these variables, the reaction amplitude
becomes

A;p = }'3/“"3J‘d3rAFJ‘d3rIB(D4(4_F)‘(KA ST ap)*

X dyp(Aa(uatip — T4p))
X VynbanCGpleprar — rIB))q)(;-I;(KI, I7p).
(21

Now we use Eq. (11a) to expand both ¢yp and
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VnaPna- The result is

Ajp = }*31."31 E

Comnst mn, s, bym,
Zmmst, m2n23211m1

3" oy, G by AN GNB
mn

fymony Lyt b

tmy) (G )(  snéBa §nlpa
X {£omy Loty |§ 511, 61 Bacty [ Sa7t 2/32“2 , (22a)

tm )\ 4, nytsfs iy 1ﬂ1
where
Z’ i, 7 * 7 *{“ _ =
Womin! = f dr QLK DY Y TR, fupar)

x FE(2, Br), (22b)
T = [ 0GRz, O YRYLF e, fa)

lzmz”z

x a2, Br), (220)

B = [ Vs o)V L, ),

(22d)
B = [ ' $unha) 7] TG, B, (220)
n2=s+s1+%(/+ /1_ /2),
_ B —ap2 —x) -
b {2[ﬂ2(2 — o) + B2 — ocl)]} > @0
ﬁ1=5+5‘2+%(2+/72— _1),
s [ Pe—afe—n '
P {2[52(2 —&) + A2 — az)]} -

Again we see that all the integrals reduce to sums of
quadratures. The most apparent drawback of this
method is the large number of terms that need to be
included in the / sums.

V. THE ZERO-RANGE CASE

It is instructive to examine the limiting forms our
expressions assume in the zero-range case. Applying
Eq. (11a) to a 6 function, we find

o(r, — 1o =lz Y;"(Ql)YZ’"(Qz)*yﬁ(“’ Bry)

X FL2 —«, Brofd. (23)
In Eq. (16a) for the transition amplitude we set
Vna(r)dna(r) = Vod(r) and use Eq. (23). The no-
recoil result is

Aip = Voﬁs E f d’R q):l_ﬁ)‘ (KA, Aig R)
m n MF
X FY2 — a, BRYF(Q)*

x OYYK,, R) f Pr $up®F o, fY ().
(24)

2227
Alternatively,
M
A=Yy f FROG) (KA, o )¢NB(R)<I>‘;;(KI, R).
F
25)

We see that even in the zero-range limit our expres-
sion for the reaction amplitude retains an expanded
form, albeit considerably simplified from the finite-
range result. This expansion can be reduced to one term
if ¢yp is a modified harmonic-oscillator function. If
énp has a strong overlap with an MHO function, then
the sum can be well represented by just a few terms.

APPENDIX A: THE BIORTHOGONAL
PROPERTY OF THE MODIFIED
HARMONIC-OSCILLATOR FUNCTION

The modified harmonic-oscillator (MHO) function
is defined to be

EIST 2
N
X Fi(—n; ¢+ %; 0%, (A1)

where I'(x) is the gamma function
I'x)=(x—1DI'(x—1),

and ,F, is the hypergeometric function

(A2)

1) x®
Fiasbsx) = 1 a(a + 1) »°
WFia; b3 = 1+ b1! TR b(b + 1) 2!

ala + D(a + 2)x®

b(b + 1)(b + 2)3!

I'(a+ N) T(h) x"
'@ TG+nn

F4(1, p) is the normalized radial harmonic-oscillator
function.

The properties of the MHO functions will be
investigated with the help of the auxiliary function

(A3)

=0

P(n+f+2) nl—b
S s
1F1("", £+ 3 Pz/“)
= (=)™ [T (0 + £ + DnlEFY(a, pfod)
(A4)
and the coefficient
Fn+£43% n! (—)™™
T+ £+ Hn't(m—n)’

The N coefficients satisfy a simple composition law

Né () = (AS)

EN (o — BNE(B) = N(w). (A6)
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The F function becomes a simple Gaussian times a
power when « goes to zero:

FL(0, p) = prtle='I2 (A7)

It follows that every F function can be written as a
sum of F£(0, p)’s:

Fi(x, p) (A8)

= 3 NL@FLO, ).

The composition law for the N coefficients leads to a
generalization of this result:

Fi(o, p) = sz(a — BF{B, p).  (A9)

Combining Eqgs. (A4), (A8), and (A7), we find the
following convenient representation of the MHO
function:

Y1\

2
nD(n + £+ g)) (x)Hir

- (i)

% Z N s(a)ocs—n 2s+l’ ——%ap

Fia, o)

(A10)

Now we prove the biorthogonality of the MHO
functions. Consider the integral

n | )
= | "dp pTie T2~ 0, p)

=(= 1)“"22 ZN (DN (—0)o (2 — )" Q

x (i T(n + £+ D0 + £+ DI, (ALY
where

=f “dp gt (s 4 5 4 £ 4 D).
0

Thus
(n|n)

_3 gNﬁs(l)Nf;,s,a)r(s +5' + £+ P
[ntn'1T(n + £+ U + £+ DI

§=0¢8=0
Using Eq. (AS),

n | ) y
( WD + £+ 3)(—1)"—*
- < X P(s + 5 4+ £+ H(=D""
= Y N, 4(1
‘go ns[( ) sgﬂ s/!F(S/ + [_*__ %)(n/ _ s/)!

x M T+ £+ DT + £+ 9. (A1)

Q2 — o, 1) = (—1)”[

T. SAWAGURI AND W. TOBOCMAN

But n!/(n — 5)! = (—=1)’I'(s — n)/I'(—n), so we have

| )y = [n'zr(n' + 4+ %)T(—l)"
nln+ £+ %) "
TGs+s +£+3
SN T
y I'(s" — n') (-l-_l)s
I'(=n) $"
Compare this with the hypergeometric function

P+ s)TB+s) Ty o
Fi(a, B;7;0) = —_
L i v VN NP
(A13)
We see that
? ’ 3 ‘;‘ n
(| ) =F! ' + 7+ 5):| (=1
nt‘n + £+ 3 n'!
e e LG+ 2+ 3)
% goN”S(l) (¢ + %)
X JFy(=n',s+ 44+ 54+ 85 +1).
Now we use the identity (A14)
oF1(—a, b;c; d)
= (1 — 8)%F(—a,c — b;c; /[0 — 1])
_Il—als+c—b) I'() (—5)5(1 — oy
s=0 I'(—a) T(c—1b) T(s+c¢) s!
I'a+c—5b) T(o)
U IMe—=b) T@a+o (AL5)
Thus

’ ' 3 %‘
nD(n + £ + %)
o ZNf;s(l) N'C+7243 s!
'in" + /+ Hn'l(s — n)!

_ n”F(n’+/+g) ~
_|:n' F(n+/+2)} ENS(I)N (—1)

=|: Wil + £+ 3)
n!(n+ 74+ 3)

} NE(0) = 6.,
(A16)

APPENDIX B: EXPANSION COEFFICIENT
FOR THE SPHERICAL BESSEL FUNCTION

Our purpose here is to evaluate the coefficient

4R — a, ) = fowdp idipF (e o). (B)

From Eq. (A10) this can be transformed to

2 ¥
n!l(n + ¢ + %)]
x 3 N (@)t ="3(h, @), (B2)
§=0
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where N, is defined in Eq. (AS5) and

Js(ﬁs O() =J; dp p2+2s+fe—%ai?3't,(ﬁp)’

We insert the Taylor’s series for j, and integrate term
by term.

~ - o m[+m);ﬁ2m

3{ ,a) = (2 e (=D™(

) = ) Y+ om 4 Dt
><1~3‘5---(1-|-23+2m+2)

(B3)

22+s+m+£( 1 m)§-+s+m+£
ﬁ2 m
_ @) 284(3)% TG +s+m+7) (_ 2oc)
o) \2)iZ TG+ m+4) m

_ a2 (milG+s+0)
G T (E) TG + ¢)
X FiG+s+ 68+ 46— (BY)
Thus we find that 3/is a hypergeometric function. We
now employ the Kummer transformation
1Fia; ¢ x) = e Fye — a5 ¢; —x)
to give

A, @) =

A2 (TG + 5+ 4)
a§+s+t’<2) F(% + [)

X e " F (—s; £+ ; 7%2x). (BS)
Comparison of this expression with the definition of
F! in Eq. (A4) leads to

3, o) = o EHOGmH—ayF (2, 5ja?). (B6)
This is now substituted back into Eq. (B2) and use is
made of Eq. (AS):

i
D + = + Bt

x 3 NL(=0F 42, ifed).  (BT)
We next make use of Eqs. (A9) and (A4):

I
! T(n + ¢ + H)
_ (ﬂ)t} - a)m-%l

Gl —a, )=

Cl2 —a, ) = Fi2 — o, ajod)

E g Fntdd) (="

af . ______ﬁ,,___
x wn(z “ it m)]%). (B8)

Thus, if we make a simple change of variables

an+§f

i) - (S

xff,( k

“fea—ap) @
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APPENDIX C: EVALUATION OF
THE FUNCTION G/l
The function §#%(r) is defined by
athts P ket k\ et k
"mm(r) = dk kjf(l‘r)eni Ay s == enzg Ay, ). (Cl)
¢ [i5% B
We use Eq. (9) to replace the C’s:

glf 1f2( r)

n1ng
(?L}‘F%Z},) (ﬂg—i'égg)
CX] OL2 g(, )

— (____ 1)n1+”2 E

22— al)(n1+%l1+%)(2 _ mz)(ng+%fz+§) ’
(C2a)
8(r) = f "k k3en) (ai : ———-L——i)
o Balon(2 — oy)]
k-
" Baloa(2 — )t
Equation (A10) is used to replace the 5s.

g(r)
ni Ny
(—1)“1”22[ D yimlwﬁzsgaz)a*:l-“!aw;ztr)]

81 =0 g =

[m!T{ny + 4, + 3, '\ T(n, + £, + 2)J%

X \’Fffz(a

). (C2b)

1 251+f) 1 289+6s
h(r) = [-——— —_—
® (ﬁ1[°‘1(2 - ‘11)]%) (132(“2(1 — ay)] ) (C3a)
X f wdke"’“”"’"*kg”"”}[(kr), (C3b)
1]

g = [ - %(2 - al)ﬂg(zz — o)
2[Ai(2 — o) + 32 — )]
n=s+s+ 4L+ 4L—0).
With the help of Eqgs. (B3) and (B6) we find
h(ry = (1l (2 — )] )_231—[1
X (Bl — )Py "85, (r, 1/2°)

. $
YL, 1 T)

Buloa(2 — e iBfa(1 — ap)yrstte
(C4)

3
} , {C3¢)

(C3d)

Now we use Eq. (A4)

= [277n!F(n + £+ %)]éﬁ3(25)2n+[37i(2, ﬂr)
B2 — a) i Bulon(2 — )y
(C3)

h(r)
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Substituting back into Egs. (C2) and (C3)

Qt’lt’z(r)

ning

ny na
ﬂ%airﬁéll) a2(n2+%fz)z z N 141

b (NG (oo 0™

§1=0 $2=0

Q- al)n1+%t’1+%(2 _ az)n2+%lz+§

x [Ty + 4 + Dng!T(ny + 4, + HP
22”+£+‘%[n!F(n + 64 %)]%ﬂzwhs
Buloa2 — ) Bylay(2 — o)1)t

F(2,Br).

(C6)
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Now eliminate the N’s with Eq. (AS5):

glds(r)
[r 0y + £+ D! Ty + £, + 3)
(% ¥ x n\T(n + £+ PP
B (2) 50520 25, \0(s; + £, + B)so!T(ss + £ + 3)
X (ny — sp)l(ny — s2)!
(=) — o) BT (2, Br)

(2 - al)n1+82+f1+%(2 — al)ﬂz+82+£2+’g’ﬂ$o‘1+[1ﬂ;sl+f1

1 na simy 1B p
= 2 Z Salylofisnts (F4(2, Br).
51 =0 s3=0 n/ﬂ

(C7)
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The Lie algebra of SU(1, 1) and its Hermitian representations are used together with spherical
harmonics to solve the wave equations for the nonrelativistic g-dimensional oscillator and the relativistic

Kepler problem.

INTRODUCTION

N the case of spherical potentials, the use of spherical

harmonics reduces the solution of the wave
equation to the solution of a radial equation corre-
sponding to a formal one-dimensional problem. In
some interesting cases, the radial equation can be
put in the form

d*X

Cdx

+ (x* + K/x)X = wX. €))

In other words, one has to find the eigenvalues w of
the Hamiltonian

H = 7%+ x* + (K[x?), )

)

It is shown in Sec. I that the whole spectrum of H
can be found with the aid of a noninvariance group,

where
7 = —i(dfdx)

* On leave from Université de Marseille. Work supported by the
National Science Foundation.

namely the covering group SU(1, 1) of the two-dimen-
sional Lorentz group. The unitary representations of
SU(1, 1) have been obtained by Bargmann,! those
of SU(1, 1) by Pukanszky.? Let us mention also the
works of Sannikov® and Barut and Fronsdal.?

In Sec. II, a complete classification of the states of
the nonrelativistic g-dimensional harmonic oscillator
is given, using the spherical harmonics of SO(g) and
unitary representations of the group SU(1, 1).

The case of the relativistic hydrogen atom is
examined in Sec. IIL

I. THE ONE-DIMENSIONAL PROBLEM

In this section, we intend to find the spectrum of
the Hamiltonian (1) corresponding to a particle of

1 V. Bargmann, Ann. Math. 48, 568 (1947).

2 L. Pukanszky, Math. Ann. 156, 96 (1964).

3 8. S. Sannikov, Zh. Eksperim. i Teor. Fiz. 49, 1913 (1965)
[English transl.: Soviet Phys.—JETP 22, 1306 (1966].

% A. O. Barut and C. Fronsdal, Proc. Roy. Soc. (London) A287,
532 (1965).
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532 (1965).
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TasLE 1. Unitary representations of SU(1, 1).
Dp(Q, h) Dy(Q, k) D* (o) D~ (o) Trivial
Name (Principal series) (Supplementary series)
Invariants c=—%+1is 0<o<t—|A
se R —i<h<i} o real negative c=0
—i<h=}
(caseh=4%,5=0
excluded)
J3 spectrum h+n
-0, —0+1, -0+ 2, 0,0—1,0—2,--" 0

n =0, £1, £2, &3, --:

mass } placed in the potential V(x) = x* + (K/x?),
where K is an arbitrary constant.
The dynamical variables

Jy = ¥(H — 2x), “4)
Sy = Hxm + mx), ©)
Jy = iH, (6)
are clearly Hermitian. Using the property
[x, 7] =i, Y]
one readily derives the commutation relations
[Jy, o] = —iJs, ®

[/, Js] = i/y, &)
[JS’ Jl] = iJZ’ (10)
which are those of the Lie algebra of SU(1, 1).

Consequently, the Hermitian operators J;, J, , Js

generate a unitary representation of SU(1, 1). The
computation of the Casimir operator Q leads to the
constant

Q=—-Ji—Ji+Ji=HK-D. (11)

Note that the equation
Q=0+ 1) (12)

has two solutions, namely
o= —4 — HK + 11, (13)
0=~} + HK + 4 (14)

As shown in references above, the number o is
generally not sufficient to characterize the unitary
representation of SU(1, 1). Another number 4, the
range of which is [—4, 3], is needed. This number is
defined as the fractional part of the eigenvalues of J;.
Given a unitary representation of SU(1,1), the
spectrum of J; is well defined without any degeneracy,
as indicated in Table I. Note that the number / occurs
only in the principal series Dp(Q, ) and the supple-
mentary series Dg(Q, ) and that for each value of

o < —1 correspond only two unitary representations,
one of the class D*(o) with a lower bound for the J,
spectrum, the other of the class D—(o) with an upper
bound.

Let us apply these properties to the case of the
harmonic oscillator in one dimension:

— (#[2m)(d*R[dr®) + 3mw**R = ER.  (15)

By introducing the new variables
x = (mofh)tr, (16)
w = 2E[hw, an

we are led to Eq. (1) with X = 0. For this value of X,
one recognizes the Lie algebra proposed by Sannikov.?
According to (13) and (14), the values of ¢ are

I

(5} e

(18)
(19)
They are both negative. Let us verify that the corre-
sponding representations D+(—$)and D*(—})provide

us all energy levels. In fact, according to Table I and
Egs. (1), (2), and (6), we get

FNE
. -

Oy = —

w=—0+rn,

(20)

where n’ takes the values 0, 1, 2, 3, -. Therefore
from (17), the energy spectrum for E is given by

DH(—3): E= (2n' + Hhow,
DH(=1: E= 2r + Dio.

21)
(22)

These relations prove that the levels are classified
in a unitary reducible representations of SU(1, 1),
D*t(—$%) containing all odd levels and D*(—})
containing all even levels.

That the representations D~ and Dg have to be
discarded can be understood from the positiveness of
the energy.

As another one-dimensional example, consider the
case of the Hamiltonian (2) with K < —1. According
to (12), only the principal series can be used. This
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problem corresponds to an infinitely deep and
infinitely high potential. A direct investigation® of the
solutions proves that the spectrum is discrete but that
the energy is defined up to an additive constant, a
property which corresponds to the fact that a repre-
sentation of Dp(Q, h) is defined up to the choice of
the value of A.

It is interesting now to look at some more physical
examples.

II. THE ¢-DIMENSIONAL HARMONIC
OSCILLATOR (g > 1)

One starts from the radial wave equation for the
g-dimensional (nonrelativistic) harmonic oscillator

d g—1d ll+q-2)
{dr2 r dr r?
2 2 2 E
_’"h‘;’ P ’;’2 R() =0, (23)

where / is the degree of the spherical harmonics in the
g-dimensional Euclidean space.
By the following change of variable and function:

x = (mo[k)tr, 249
X(x) = xte-UhR, 23)
Eq. (23) takes the form
{—d?dx® + x* + K[x* — w}X(x) =0, (26)
with
w = 2E/hw, 27
K=ll+9—-2+#g—D@—3). (28

Putting this value of K in (13) and (14), one gets
o= —4l—ig, (29)

g =%+1g—1. (30)

The only representations which are compatible with
the positiveness of the energy are those of the type
D*(0). The only value of ¢ which is acceptable is o,

which is negative for all values of /. The spectrum of
Jy for DH(—4 — g is

w=44+l9+r #=0,1,2,3---) 3
Equation (27) leads to the energy spectrum

E= (42" + ipho = (n + ig)ho,
where

(32)

n=1+42 (33)

is the usual quantum number.

5 The authors are grateful to J.-J. Loeffel for his help in the under-
standing of this question. The property which is emphasized in the
text is essentially due to the fact that one has for X < —} two sets
of square-integrable solutions of Eq. (1) instead of one when K = 0.

H. BACRY AND J. L. RICHARD

Our result describes the degeneracy of each level
characterized by the value of the number n. For
instance, n = 0 corresponds to the level (! =0,
n' =0), n=1 contains the three levels (/ =1,
n' = 0), n = 2 contains the levels (/ = 0, n’ = 1) and
(! =2, n =0), etc. More generally if n is even, all
even values of / are possible from 0 to n. If n is odd,
all odd values of / are possible from 1 to n. Usually,
the g-dimensional oscillator is described by the
invariance group SU(q) where each level  is associated
with the “triangular” representation of symmetric
tensors of rank n, the dimensionality of this repre-
sentation describing the degree of degeneracy. One
obtains in this way the reducibility of these representa-
tions of SU(g) with respect to SO(q).®

In this problem, the group of invariance SO(q) gives
rise to a spatial degeneracy. The noninvariance group’
SO0(g) x SU(1,1) provides us with the complete
spectrum, but the ‘“accidental” degeneracy is not
explained by an invariance group as it is in the case of
the SU(q) description.

III. THE RELATIVISTIC KEPLER PROBLEM

The radial Klein-Gordon equation for a Coulomb

potential V' = —Ze?/r can be put in the form?®
1d dR 1 — Z%*
_2_(P2—) + (K__"M R =0,
p dp\" dp 4p 4 P
(34
where
p = Qfhic)lmct — E*Pr, (335)
a = e*fhc, (36)
w = 4ZaE/[m2c* — E?)}. 37

¢ The dimensionality of the space of homogeneous polynomials of

-1
+q[ ) The Laplace

operator transforms this space into the space of homogeneous
polynomials of degree / — 2. The kernel of this transformation is the
space of spherical harmonics of degree /, the dimensionality of which
is then

I+q—1 1+q—3) q@+i1=3.
N = - = — L

: ( : ) ( 1—2 ) =@t 2A= D e
The reduction of the “‘triangular” representations of SU(g) with
respect to SO(q) corresponds to the following relations

Sv=("TITN), Ea= ("I,

1=0 =1 9
(even) (odd)

7 Clearly, we must use in our approach reducible representations
of the group SO(g) X SU(I,I). We used the theory of spherical
harmonics of the g-dimensional Euclidean space in order to obtain
the reduction of the representation. In that sense, our method,
although complete, is only partially group theoretical.

8 The notation is that of L. J. Schiff, Quantum Mechanics
(McGraw-Hill Book Company, Inc., New York, 1955) p. 338.

l
degree / in the g-dimensional space is (
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A new change of variable and function

p=x% (38)
R = xiX, (39)
leads to the Eq. (1) where K takes the value
K=4l(l+1)—4Z%2 + 4. (40)
The corresponding negative value® of ¢ is
o= —}— [0+ —Z%h (@)

The positiveness of the energy requires us to choose
the representation D*(¢). Formulas (20), (35), and
(39) provide us the energy spectrum

ZoE|[m2c* — E2t =n" + }

+ [+ —222F (W =0,1,2,--+), (42

a well-known result.
The same method can be used for the second-order
Dirac equation

{(pu — eA)(p" — eA") — (eh[2¢)0"'F,, — m*c*}p =0,

(43)

which can be written (for the radial part) in the case
of Coulomb potential

14d rzi) + 2Zalhc  m’c' — E?
{r2 dr( dr r hic®
Z%* — (1 + DA — iZoo - F

+ 2

R=0. (44)

After the change of variables (35) and (37), this
equation becomes

1 d/{f,d w 1
—_—— — + —_— e —
{pz dp(P dp) (4P 4

2% — Il + DK — iZao - f)}R =0. (45

+ 2
The last term has been diagonalized by Bieden-
harn!® with the aid of the Martin-Glauber'* operator

I‘=c—;l_li+ilac-f+1 (46)

9 Z is supposed to be small (Z < 68).
10 1., C. Biedenharn, Phys. Rev. 126, 845 (1962).
11 p_ C. Martin and R. J. Glauber, Phys. Rev. 109, 1307 (1958).
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which satisfies the equation

I'T — 1) =LK + iZas « F — Z2%2.  (47)
The eigenvalues of I'(I' — 1) computed by Bieden-
harn are

[k2 — Z2a2)[(k% — Z22)F 4 sgn ()],  (48)
where k = £1, +2, 43,---. A simple calculation
leads to the representations

DH[—(k® — Z22)%— 1] for k> 0,

DH[—(k? — Z22)]} for k <O.

(49)
(50)

Consequently the energy spectrum is given by

ZoE

L 2 2 2.4
et — gy =" T E =2 (>0

=n' + (k¥ — Z%2)} (k <0),
(51)

in accordance with the usual formulas.
In this last example, we do not have, truly speaking,
a dynamical group since the group which is involved,

namely SO(3) x SU(1,1) does not describe the
degeneracy due to the spin. The spin variables increase
the number of degrees of freedom and for this reason
our group is not rich enough under this point of view.
Some arguments could be found in favor of a group
like SO(5, 1) to classify the levels'? in the Dirac case.
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12 The g¢-dimensional nonrelativistic Kepler problem has, as a
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If we use the definition of phase space given in H. Bacry,
Commun. Math. Phys. 5, 97 (1967), a particle with nonzero
spin corresponds to a four-degrees-of-freedom problem. Conse-
quently, one can hope to build explicitly the hydrogen-atom levels
with the aid of a unitary representation of SO(S, 1).
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An evolutionary condition is derived from generalized jump relations including dissipation terms and
applied to the basic equations of magnetogasdynamics. Two contact discontinuities existing as solutions

of these equations are found not to be evolutionary.

TARTING with Friedrichs,! hydromagnetic dis-
continuities were investigated in a most accurate
way, within the framework of ideal magnetogasdy-
namics (MGD).2® The ambiguity of such weak
solutions is removed by a so-called evolutionary condi-
tion,”:® a first-order stability criterion. In the following,
this condition is extended to nonideal, one-dimensional
MGD.
The one-dimensional, unsteady system of equations,
which is later on to be identified with the MGD basic
equations, is assumed to be of the form

The independent variables x, ¢ refer to a coordinate
system moving with the shock velocity s. The vectors
F and G are continuous functions of the variables U.
The system (1) consists of a set of conservation laws
which has been generalized by adding the dissipation
terms G,,. For the shock relations connecting two
states constant in space and time of the form

U=U, =const (x <0),

U, = const (x > 0), &)
we obtain from (1) by integration
F—-50+G,]=0 3

if [0] = 0, — 0,, F = F(D), and G = G(T). With
respect to the subsequent identification of G (depend-
ing only on the magnetic field strength which must
be continuous across a discontinuity in the case of
finite electrical conductivity), (3) can only be satisfied
if

[G] = 0. 4

* Deceased.

1 K. O. Friedrichs, Los Alamos Report No. 2105 (1954).

2 A. I. Akhiezer, R. V. Polovin, and G. J. Lubarski, Zh. Eksperim.
i Teor. Fiz. 35 (1958) [English transl.: Soviet Phys.—JETP 8, 383
(1959)].

3 A. I. Akhiezer, G. J. Lubarski, and R. V. Polovin, Proc. 2nd
Intern. Conf. Peaceful Uses Atomic Energy, Geneva, 1958, 31, 507
(1959).

¢ J. Bazer and O. Fleischmann, Phys. Fluids 2, 366 (1959).

5 J. Bazer and W. B. Ericson, Phys. Fluids 3, 631 (1960).

¢ J. Bazer and W. B. Ericson, Astrophys. J. 129, 758 (1960).

7 P. D. Lax, Commun. Pure Appl. Math. 10, 537 (1957).

8 K. O. Friedrichs, General Theory of High Speed Aerodynamics
(Oxford University Press, London, 1955), p. 33.

The shock relations have, therefore, the general form
[F—s50]=0, ®
modified by the secondary condition (4). Discontinu-
ities determined by these shock relations are required
to satisfy an evolutionary condition. By virtue of the
dissipation term, the condition we now derive is essen-
tially different from that which holds for the non-
dissipative system.
A perturbed solution of (1) may be written in the
form®

U=10+6U (6)

(M

where the perturbations correspond to incoming and
outgoing small-amplitude waves. U has to satisfy the
boundary conditions

[F—sU4+G,]=0 ®
and the condition (4). Neglecting quadratic and
higher-order terms in 6U, a Taylor expansion of F and
G leads to the linearized form of (8):

[ASU — Uds + RIU,] = 0, 9

A= 4 —slI, 06U, = (8U), @
if the matrices 4 and R are defined as A = 0F/0U|y_p
and R = 9G/0U|y_g . In avalogy to (3), (9) can only
be fulfilled if

with
s =35+ ds,

[RSU] = 0. (10)

Being a solution of the linearized equation (1), U
has the form

0U = Y 8a'“r(w) exp [iwt — ik (w)x]. (11)

Substituting (11) into the linearized equation (1), we
obtain
(d; — Iwlk; — iRk)r; =0 (j=1,2). (12)

The index j refers to both sides of the discontinuity.
Using (11) and (12), separating into incoming and
outgoing waves (0U,,, 6U,,,), and choosing signs of

® We follow the treatment and notation of A. Jeffrey and T.

Taniuti, Non-linear Wave Propagation with Applications to Physics
and Magnetohydrodynamics (Academic Press Inc., New York, 1964).
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daly), ., appropriately, Eqgs. (9) and (10) become
Y Sall{(Iw/k“ '} ouy + [O100
=Y da{(Iw[k >}, (13)

S 8af R )ous = 3 daP(Re' ),  (14)
a 4

where ds = —do exp (iwt). Equations (13) and (14)
must be uniquely soluble with respect to da%); and do
for given da?’ and arbitrary w, if the discontinuity is
to be physically realizable. Since the wavenumbers
k™ are complicated functions of w, as can be seen from
the dispersion relation following from Eq. (12), the
investigation of a long-wavelength perturbation, i.e.,
k vanishing in first order, proves to be useful. In first

order, (12) goes over into the eigenvalue equation
(4; — Iwlk)r; = 0. (15)

In this limit the phase velocities w/k; exactly corre-
spond to the characteristic velocities of the ideal
equations (i.e., G = 0).

Up to here the states U; have been assumed to be
constant. If now the U, are allowed to be general
continuous functions of x, it is easy to see that the
boundary conditions are valid in the form just
derived for U; = const, if the indices j = 1, 2 corre-
spond only to the point x = 0 on both sides of the
discontinuity. Also Egs. (13) and (14) remain valid,
since, as is shown later on, R = const.

The one-dimensional, unsteady MGD basic equa-
tions for constant electrical conductivity o can be
written in the form (1),1° if

P
pv
pv?[2 + pe + H?[8w
U= pUy : (16)
H?/
PV,
_ H, ]
_ o, -
pvs + p + H*[8=
v(pt?[2 + pe + p + H*4m) — (H J4m)v-H
F = pv,v, — H H [Am ,
Hyp, —v,H,
pvv, — H H, |4
L Hyp,—v.H, .
(17)

10 4. Friedel, Scientific Report No. 30, Contract 61(052)-675,
Innsbruck University (1966).
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0

0
(c*/327*0)H?
G = 0
—(c*/4no)H,

0
_—(c*/4no)H,_|
On both sides of the discontinuity, the magnetic
permeability 4 = 1. H = (H,, H,, H)) is the mag-
netic field strength, v = (v,, v,, v,) the velocity, p
the density, p the pressure, and e the internal energy
density in Gaussian units (CGS units). With (Q) =
%(Ql + Q2)! m = plﬁwl = P2522: T = I/P: and ﬁ:c = Uy
— §, taking into account the secondary condition (4)
[= the continuity condition for H as becomes

patent from (18)], the jump relations (5) have the
form

(18)

mlr] — [v,] =0, (19)
mlv,] + [p] =0, (20)

mle + {p)r] = 0, (21)
miv,} = 0, (22)

(H)lv.] — Hplv,] =0, (23)
mlv,] =0, (24)
H,[v,]=0. (25)

If m = 0, Egs. (19)-(25) determine two contact dis-
continuities:

(@ H,#0 [p], [v], [H] =0,

(b) H, =0 [p], [v.], [H] = 0. (26)
As is shown, both contact discontinuities cannot be
evolutionary.

Case a. The solution of (15) shows that six different
outgoing waves with the phase velocities —V,,, —¢,
—Ca» Vass Cra» Co exist,! where ¥V, is the Alfvén
velocity based on H,, c, is the fast and c, the slow
magnetosonic velocity. Since r® and [U] are linearly
independent, a unique solution of (13) can be found.™
From (18) we get

0

0
ctldna

—c*lame

—c*4no_|
(27)

1 A, Jeffrey and T. Taniuti, Ref. 9, Chap. 6.4.
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Therefore (14) determines three further equations
independent of (13), a fact that must give rise to a
contradiction.

Case b. Without loss of generality the simplified
case based on v = (v, 0,0) and H = (0, H,, 0) may
be considered.®!! Two outgoing waves with the
phase velocities ¢, (= ¢,;) and —¢;, (= —c¢,,) lead to
four independent equations (13), (14). Consequently,
also in this case, the evolutionary condition cannot be
fulfilled.

For U, # constant contact (m = 0) as well as
general discontinuities, (m # 0) may exist.?? The

JOURNAL OF MATHEMATICAL PHYSICS

HELMUT FRIEDEL

general discontinuities are characterized by {G,] # 0.
From what has been stated it is easy to see that both
discontinuities cannot be evolutionary.
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Random anisotropic media are assumed to be characterized by dielectric tensors in which the com-
ponents are random functions of position. A turbulent plasma in a static magnetic field is one example
of such media. In this paper wave propagation in turbulent magnetoactive plasma is studied. The
averages of electric field and dielectric displacement vectors over an ensemble of these media are found,
assuming these average quantities are time-harmonic plane waves. The effective dielectric tensor is defined
as the proportionality factor between the two average quantities. When this effective dielectric tensor is
applied to the wave equation, a general dispersion relation for plane waves is derived. Expressions for
propagation constants are obtained and some special cases are considered in detail. It is found that,
because of random scattering, there are attenuations for both the ordinary and extraordinary waves for
the average fields. The results reduce to those obtained by J. B. Keller and F. C. Karal when the

anisotropy of the background media is removed

1. INTRODUCTION

ECENTLY, the problem of derivation of the
effective dielectric constant, permeability, and
conductivity of a random medium has been treated
by several authors,’™ In these papers, the medium
is assumed to consist of a uniform, isotropic back-
ground with random concentrations of small particles
imbedded in it. But since in many cases the background
medium is actually inhomogeneous or anisotropic—
or even both—the problem of extending their results
to such cases is of interest.

* This work was supported by National Aeronautics and Space
Administration under Grant NSG 24.

LF. C. Karal and J. B. Keller, J. Math. Phys. 5, 537 (1964).

2J. B. Keller and F. C. Karal, J. Math. Phys. 7, 661 (1966).

2V. M. Finkel’berg, Zh. Techn. Fiz. 34, 509 (1964) [English
transl.: Soviet Phys.—Tech. Phys. 9, 396, (1964)].

4Yu. A. Ryzhov, V. V. Tamoikin, and V. I. Tatarskil, Zh.
Eksperim i Teor. Fiz. 48, 656 (1965) [English transl.: Soviet Phys.—
JETP 21, 433 (1965)].

In this paper we limit ourselves to the study of the
case of a special type of anisotropic medium corre-
sponding to a plasma in a static magnetic field. The
medium is characterized by a dielectric tensor e(x)
which contains a random part. Keller and Karal’s?
method will be followed to derive an expression for
the effective dielectric tensor operator as defined by
them. In order to evaluate this tensor operator, the
dyadic Green’s function for this anisotropic back-
ground medium is derived explicitly in terms of a power
series expansion. Using this Green’s function, the
dielectric tensor operator, when applied to a plane
wave of wave vector k, can be expressed as an ordinary
tensor. General formulas are derived for the elements
of this tensor. They reduce to the special case studied
by Keller and Karal’ when the background becomes
isotropic. This effective dielectric tensor is used to
predict the behavior of a plane wave by studying its
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sponding to a plasma in a static magnetic field. The
medium is characterized by a dielectric tensor e(x)
which contains a random part. Keller and Karal’s?
method will be followed to derive an expression for
the effective dielectric tensor operator as defined by
them. In order to evaluate this tensor operator, the
dyadic Green’s function for this anisotropic back-
ground medium is derived explicitly in terms of a power
series expansion. Using this Green’s function, the
dielectric tensor operator, when applied to a plane
wave of wave vector k, can be expressed as an ordinary
tensor. General formulas are derived for the elements
of this tensor. They reduce to the special case studied
by Keller and Karal’ when the background becomes
isotropic. This effective dielectric tensor is used to
predict the behavior of a plane wave by studying its
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dispersion relation. General expressions for propaga-
tion and attenuation constants for ordinary and
extraordinary waves are derived. An example is given
for the case of longitudinal propagation.

2. FORMULATION

Let us consider a turbulent plasma in a static
magnetic field B,. The magnetic field is assumed to be
in the z direction. For electromagnetic fields with
harmonic time-variation exp (—iwf), the plasma can
be characterized by the Cartesian dielectric tensor®

l—X —iXY 0
exX)=¢+e(x)=| XY 1-—-X 0
0 0 l1—X
-1 —iY O
+ AXx)| iY -1 0 |+0(Y?), (2.1)
0 0 -1

where X = wl/w?, Y = o/o. v, and o, are the
plasma frequency and cyclotron frequency of electrons,
respectively. AX(x) represents the random concentra-
tion of irregularities in the plasma and is a random
function of position. In the following we assume that
the average of AX(x) over an ensemble of these
media is zero, ie., (AX(x))=0. Also, in (2.1),
X < 1and Y < 1 are assumed.

For this dielectric tensor, the wave equation for
the electric field is

LE = (V x V x —kZe)E = 0,

where k, is the free space wavenumber.

(2.2)

Following Keller and Karal,! Eq. (2.2) is written as

(Lo — L)E =0, (2.3)
where
Ly=V x V x —kl¢,, (2.4)
L, = kle,. 2.5
The solution of Eq. (2.3) can be expressed as a
series given by
E=E + LBILlEo + LEILlLEILxEo + 0((AX )3), (2.6)
where E, is the solution of (2.3) when L, = 0 and L;"
is the inverse operator of L,. From the definition of
dielectric tensor, the displacement vector D is ob-
tained by multiplying (2.6) by €.
D = €E
= E + (€ + €Lg'LDE,
+ (&.L5'L; + €Lg'L; L' L)E, + 0(AX)) (2.7)

5 C. H. Papas, Theory of Electromagnetic Wave Propagation
(McGraw-Hill Book Company, Inc., New York., 1965), p. 189.
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which holds true for each sample of the ensemble.
Taking the ensemble average of (2.7) and using the
assumption (AX) = 0, we obtain

D) = &Ky + ((&Lg'Ly) + €L Ly Ly L)E,
+ 0((AX)). (2.8)
Similarly, the average of Eq. (2.6) becomes
(E) = Ey + (L3'L Ly LOE, + 0((AX)Y). (2.9)

This equation is then solved by iteration to yield

E, = (E) — ([3'L, Lg'Ly)(E) + 0((AX))). (2.10)
Substituting Eq. (2.10) into (2.8), we obtain
(D) = €(E) + {&,Lg'L)XE) + 0((AX)?). (2.11)
If we define the effective dielectric tensor by
(D) = €. (E) 2.12)
then, from Eq. (2.11), we have
€q = € + (& Lg'Ly) + O((AX)%). (2.13)

The above was derived by Keller and Karal.? From
this we notice that the effective dielectric tensor is,
in general, in the form of an operator tensor. In the
following we concentrate on the evaluation of the
operator tensor (€, L;1L,).

3. INVERSE OPERATOR L;?

In terms of Green’s function, the inverse operator
L3! operating on any vector function F(x) can be
represented by

LF(x) = f T(x, X') - F(x') dx, 3.1)

where T'(x, x') is the dyadic Green’s function satis-
fying the equation
L,T = —15(x — X), (3.2)

where | is the unit dyadic. A dot represents scalar
product. The Fourier transform of (3.2) yields

(=) +pp+ k- T =1, (33)
where
K= k(1 — X), 34)
0 -1 0
n=iXY|1 0 0, (3.5)
0 0 0
and
fip) = f T(x, X')e %) gx. (3.6)

Equation (2.1) is used in deriving (3.3). For high fre-
quency, Y & 1, Eq. (3.3) can be solved in a series
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of ascending powers of Y. Let

f‘ij = f‘?, + f‘zl;, + O(Yz)a (37)

where
T/ = 0(Y) « 1.
Equation (3.3) can be decomposed into
Zeroth order:
[k} — P")0u + PipidD2; = 65,
First order:
[( = P)3u + ppdley = =kl (3.10)
The solutions for these two algebraic equations are
respectively
f‘?,- = (=0;; + P2,/ KDI(P* — KD,
r b = [—koni; + (ko/kDnapeps + (K3[KD DD
— (ka/ k)PP (P — KD (3.12)
When the values of the components of the matrix
v} are substituted into (3.12), we have

[l = GXYK/KDIKE — (1 + pD)(P* — K3)* = —TY,

(3.8)

3.9

(3.11)

(3.13)
Dls = (—j X Yko/k)pops/(p® — ky)? = =TI, (3.14)
[} = (G XYKYKD)pspy/(p® — K32 = =T, (3.15)
F}l = P;z = I‘;s = 0. (3.16)

The inverse Fourier transforms of these expressions
can be obtained with the aid of the mean value
theorems.? Details are given in Appendix A. To the
first order in Y, the dyadic Green’s function is given
by

Pia‘(x’ X’) = F:')j(x’ X’) + F;j(xs X,)’ (317)
where

Fz"]:i(x’ X') = Gy(r)d;; + Gz(")ri"j/"2, (3.18)
Dla(x, X') = [ikyr — 2 — (ikyr — D} + r3)/r2]Gy(r)

= —Iau(x, x), (3.19)
[la(x, X') = —[(ikyr — D)3 + r3)/r*1G4(r)
= —T5(x, x), (3.20)
Ioa(x, X') = [(ikyr — D} + rD)/r*1G4(r)
= —T(x, X), (3.21)
=T =T4=0. (3.22)

For convenience we have adopted the following
notations:

r=x—x, r=]r, (3.23)

Gi(r) = (—1 + ikyr + kir®)e™17 47k
— S(r)/12mk3?, (3.24)
Gor) = (3 — 3ikyr — K)o /4mk?, (3.25)
Gy(r) = iXYkie™"[8mk}r. (3.26)

LIU

One may notice here that this Green’s function is
valid in a region where the inequality |I'},| < [I7] is
satisfied. This corresponds to a region not far away
from the source, so that the Faraday rotation effect
of the field is not important. In the evaluation of the
effective dielectric tensor, the most important contri-
bution to the scattered field from the irregularities is
the near-field contribution. Therefore, no appreciable
error is introduced if this Green’s function is used.
The same procedure can be followed to get higher-
order terms for the Green’s function.

4. EFFECTIVE DIELECTRIC TENSOR

To evaluate the effective dielectric tensor, we start
with the evaluation of (e, L;L,), which is an operator
tensor. When it is applied to a plane wave A exp (k- x),
it becomes, with the help of (3.1),

<€1L-01L1> . Aeik.x;
= K60+ [Tox %) - €i0x) - A ax)

= K(ey(x) - f I(x, ') - (x') - Ac™ dx’)
+ k¥ey(x) - f I'(x, X) - €(x) - Ae* dx’)

+ O(YHAX)P). (4.1

In component form, Eq. (4.1) can be written:

(€15 Ly);;A e~

= K¥ewn(®) f T2,(%, X )eums(X) 4,6 dx')
+ k¥epn(X) f T (% X )epm (X)€% dx')
= k%Cmm;’[ngm(X, x)p(r)A e dx’

+ [Tl x)p00% dx'], 42)

where
CinmiP(r) = (€,i,(X)€; 0, (X')).

The random part of the dielectric tensor €,(x), as
given by (2.1), is due entirely to random fluctuations
in plasma density whose correlation is

p(r) = (AX(X)AX(X)/(AX)?). 44

For simplicity we have assumed that irregularities in
the density are homogeneous and isotropic, so that
the correlation function depends only on r.

The tensor product C,,,;R,,, for any tensor R,,,
is given in Appendix B. Applying this relation on
(4.2), using the mean value theorem developed by

(4.3)
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Keller and Karal,! we can write

<€1L;1L1> A _eik.x' — (Sij + Tij)Ajeik.x

X N

(4.5)

where the right-hand side, S,;, and T, are only
tensors and no longer operators. Elements of the
S matrix are related to the zeroth-order Green’s
dyadic I'®, while elements of the 7 matrix are related
to the first-order Green's dyadic I'?), They are given
to the order of Y((AX)?) by:
Su = (AX)")[D + (kz/k)M],
Sgp = <(AX)2>[D + (kﬁ/k“’)M],
Sas = (AX))[D + (kifk*)M],
Sie = (AXP[(k.k, /KM + i2YD
+ iY(k; 4+ kDMK,
Sis = (AX)")[M(k.k, + iYk,k)/K’],
Sy = (AX)®[(k k, /KM — i2YD
— iY(KE + R)M[K],

Ses = (AX))[M(k,k, — iYk.k )K",
Sa1 = (AXP)[M(k.k, — iYk,k,)/K*],
Sse = (AX))IM(kk, + iYk.k,)/K?];

Th=Tyny=Tyu=0,

Ty, = (AXP)F — H, — Hjl = =T,

T3 = _<(AX)2>[Hy + H,l = —Ty,
= (AX))[H, + H)] = — Ty,

(4.6)

4.7

where k is the wave vector for the plane wave, and

D=k f w[cl(r),,(,)f(,) — Gyr)p(r 2k g—ﬂ dr,

(4.8)

P _

M= —k2 L Gz(r)p(r)r‘z(akz =

)dr, (4.9)
F=k f “likr — 2GyPp(F () dr,  (4.10)

H, = —k; J:o(iklr — DG4(r)p(r)r?
C[EE LK,

Kok® | k ok K
a=1x,2z (411)
f(r, k) = 3;’—” sin kr. (4.12)

G.(r), Gy(r), and G,(r) are given by (3.24), (3.25),
and (3.26), respectively.
To prove Eqs. (4.6) and (4.7), we consider the
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following component of Eq. (4.2):
(€L Ly)1adpe™ ™

= (8K [P+ YT + Tulo A d

— <(AX)2>k3f{[rlr2 + lY(T? + rg)]Gz(") + IZYGI(V)

r2

+ l:iklr — 2 — (ikyr — D(F5 + r%)j'cs(r)}

r2

x p(r)A,e** dx'. (4.13)

Changing the variable of integration by the relation
x' = s — r, writing dr = dr dS where dS is the area
element on a sphere of radius r centered at x, and

applying the mean value theorem, we obtain for
(4.13)

(€ Lg'Ly)1pApe™™
= (AX)»{(kk, /KM + iY[2D + (ki + EXM/K?
+ [F — H, — H,]}A,e™™
= (Sp2 + Tip)Ape™™. (4.14)

Therefore, we have obtained the components S;, and
T,s. The other terms of the tensors can be calculated
in a similar manner.

Summarizing the above results, we have the effective
dielectric tensor for a plane wave with wavenumber k:

€omrij = €0i; + S + T (4.15)

We note in (4.15) that the effective dielectric tensor
contains a Hermitian part €,; and a non-Hermitian
part S;; + T,;. The former is the dielectric tensor of
a plasma in an external magnetic field B, and satisfies
Onsager’s relation €y;;(Bg) = €,,;(—B,).° The latter is
the contribution to the anisotropy from random
scattering of waves in the medium and, in general,
does not satisfy Onsager’s relation. From the non-
Hermitian property of the effective dielectric tensor
€. it is evident that attenuations of the average
fields will occur in the medium and they are caused
by the random scattering of waves. Attenuation con-
stants will be derived in the next section.

Also we note that the elements of the effective
dielectric tensor depend on the wave vector k.
For the case ¥ = 0, so that the background medium
is isotropic, we have T'' = 0, and the above results
reduce to those for a random, isotropic medium
treated in Ref. 2.

5. PROPAGATION CONSTANT

Once the effective dielectric tensor for the average
field in this medium is known, the general dispersion
relation for a plane wave with wave vector k can be
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derived. From Egs. (2.2) and (2.6), it is easy to show?
that the average field satisfies

LyE) + L [;'L(E) = 0.
For a plane wave of the form
(E) = Epecx,
Eq. (5.1) reduces to
W) E, =0,

5.1

(5.2)
where

W(K) = kk — k2l + Kleor. (5.3)
The dispersion relation for this plane wave is then
given by the equation
det W (k) = 0, (5.4)
where det represents determinant. Substituting (4.13)
and (5.3) into (5.4), we obtain the following:
(klky)[a; sin? 0 cos? ¢ + @y, sin? O sin? ¢ + a5 cos® 0
+ (@13 + as) sin 6 cos G cos ¢ + (age + dys)
X sin 6 cos 0 sin ¢ + (@y, + a»)
X sin® 6 cos ¢ sin @] — (k/ke)*{{as2(a15 + a31)
— @yalsy — Qpyidy,] Sin 6 cos 0 sin ¢
+ gty + asy) sin? B cos ¢ sin ¢
— Q5053 SIN% G COS2 b — a,,a5, sin® G sin? ¢
~ (a11@ — 150y) €08* 0 + ayya53 + dapass
b+ Gudas — Gialni} + (G1as — Geda)ass = 0,

(5.5)
where we have defined
k, = ksin 6 cos ¢,
k, = k sin 8 sin ¢,
k,=kcos@, (5.6)
Aij = €off 45+

For the case when there is no randomness so that
AX = 0, Eq. (5.5) reduces to the well-known dis-
persion relation for a magnetoionic medium. The
wavenumbers are then given bys

ﬁ)z =1— X
(ko 1 — Y%sin?6/2(1 — X) ’
+ [Y*sin* 6/4(1 — X)* + Y?cos? O]

ELI)? =1 X
ko 1 — YZsin® 6/2(1 — x) ’
— [Y*sin® 0/4(1 — X)* + Y?cos? OF
(5.7
where k; and k;; are the propagation constants for
ordinary and extraordinary waves, respectively,

For high frequencies, and quasilongitudinal waves
(waves propagating outside a small region about
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0 ~ 90°), Eq. (5.7) yields
(ki/k)i=1— X 4+ XYcos 8,
(kII/kO)g = 1 - X - XYCOS 0-
Both modes have electric fields circularly polarized in
a plane perpendicular to k. The corrections to k; and
kyr, due to the small randomness AX, can be obtained

by solving Eq. (5.5) using perturbation method. We
obtain, to the order of Y{(AX)?),

(kl/ko)2 =n; + ”},

(5.8)

. (5.9)

(kifko)* = nyy + nyy,

where

n=1—X+ XYcos0, (5.10)
LTl T 2 (5.11)

2(1 — X)XYcos 0
ng=1—X—XYcosb, (5.12)

2

nhy = — Mndi = nudy t 0 (5.13)

2(1 — X)XYcos 6

In the Appendix &y, d;, &; are given; they corre-
spond to the correction terms in the coefficients of
Eq. (5.5). They are functions of the magnitude as well
as the direction of the vector k. In general, Eq. (5.9)
must be solved for k& in which these functions are
substituted.

For the special case of longitudinal propagation, so
that § = 0, the expressions d,, d,, and d; reduce to

&, = Zys, (5.14)
8y = (I — XN(Zyy + Zys + 2Z3,), (5.15)
O = (1 — X)N(Zyy + Zps + Zgs)

+i(l — X)XY(Zy — Z1), (5.16)
where we have written

Z,=S8,+T, (5.17

for simplicity. For this case, Egs. (5.11) and (5.13)
become

“§ = }{Zn + Zp — i(Zyy — Zp)), (5.18)

”}I =37y + Zp + i(Zyy — Zyp)]. (5.19)

Substituting (5.18) and (5.19) into (5.9), we obtain

the equations for the propagation constants for ordi-

nary and extraordinary waves, respectively, up to the
order Y{(AX)?):

(kifko)> = (1 — X) + XY + ((AX)®)

X [D + iQ2YD + F — H, — H)]; (5.20)
(kyifke)* = (1 — X) — XY + ((AX)®)
X [D— iQiYD + F — H,— H)]. (5.21)

These two equations reduce to a single one when
Y = 0, corresponding to the equation derived by
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Keller and Karal® for the case in which the electric
field is perpendicular to the direction of propagation.
When Y 7 0, because of the anisotropic property of
the background medium, there are two modes of
propagation. The propagation constants for each
mode is affected by the randomness of the medium
in a different way. In general, to the order of Y{(AX)?),
the solution of Eq. (5.20) can be obtained simply by
substituting ko(ny)? for & in the evaluation of D, F,
and H’s on the right-hand side of (5.20). Similarly,
the substitution of ky(n;;) for k on the right-hand
side of Eq. (5.21) gives the solution for ki to this
order.

The attenuation constants for these two modes can
then be written as

2

K(AX? |
2(1 — X)*

+ R,[2iYD + (F — H, — H))],
kol(AX)®) I
_%. m
2(1 — X)
— R,[2iYD + (F — H, — H))],
both to the order of Y{(AX)?).

As an example, let us consider the special auto-
correlation function given by

p(r) = exp (—a'r).
Substituting (5.24) into (4.8)-(4.11), we obtain

ap = I (ky) =

(5.22)

o = Im(kII) =

(5.23)

(5.24)

— L‘z’ [1 + ika 2(kya)*
2L Ka® T (ka) + (1 — ika)?
1/, 1+ Ka 1""‘1“)}
—— |1 +—=——)cot™ |——]) |, (525
ka( * kzaz) ( ka °
R 4.2 2012 2y _ 35
F = ZiXYka® (k2 = 2K) = Biaky 5 )
K [0k~ k) + 2iak’
iXYky
H¢+Hy— - k§k20

x [1 B R L (1 = ’kl“)] (5.27)
ak ka

By setting k = ko(n)t and k = ky(n;)? in Egs.
(5.25)-(5.27) and substituting them into (5.22) and
(5.23), respectively, we obtain the attenuation con-
stants a; and « . For ((AX)?)(k,a) K 1, Egs. (5.25),
(5.26), and (5.27) can be simplified, and Eqs. (5.20)
and (5.21) yield

Xy
A1 — X)

3 XYak
- ! O(Y3(AX)®), (5.28
1) | e, 629

; {AX)

o p
Ky = k(1 — X) [1+ 0=

1—-2Y
X
( kia
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e =t = X 1 = 2T (axy
21— x) " e = xy
1+2Y 3 XYak -
x ( it x)} + O(YHAXY). (5.29)

We see that for cases where the correlation length
of the medium is small k,a K 1, the propagation
constants to the order of Y{(AX)?) are the same as
those for a nonrandom medium. The attenuation
constants are of the order ((AX)?) and are different
for ordinary and for extraordinary waves. For cases
such that k,a 3> 1, we can no longer substitute ko(np)t
or ky(nyp)? in Egs. (5.25)-(5.27) because some of the
terms become very large. Therefore, Eqs. (5.20) and
(5.21) must be solved more accurately. In principle,
a perturbation method can be used in which the solu-
tion given by Keller and Karal® will be taken as the
zeroth-order solution for ¥ = 0. Higher-order terms
can be obtained for ¥ « 1. The result will not be
discussed in this paper.

For waves propagating in other directions, similar
treatment can be followed to obtain the propagation
constants.

6. CONCLUSIONS

The effective dielectric tensor and propagation
constant for a plane wave in a random medium with
anisotropic background are discussed in this paper.
Approximate expressions are derived for a turbulent
plasma in a static magnetic field. The elements of the
effective dielectric tensor are found to depend on the
magnitude as well as the direction of the wave vector
k. There is a non-Hermitian part in this tensor,
corresponding to the attenuation to the average fields
in this medium due to random scattering of waves.
The tensor reduces to the ordinary formula for
magnetoionic medium when AX = 0. The contri-
butions to the propagation constants for ordinary
and extraordinary modes are found to the order of
((AX)*) Y. The new propagation constants depend on
both the polar angle as well as the azimuth angle of
the wave vector k. For the case of longitudinal propa-
gation, the attenuation constants for the two modes
are derived. They differ by terms of the order of
((AX)®Y. For a specific medium, for which the
correlation function is assumed to be given, calcula-
tions are made for the propagation and attenuation
constants. The results reduce to those of the special
case treated by Keller and Karal®! when ¥ = 0.

The present discussion is still limited to a weak
random medium. For media with strong irregularities,
extensions must be made in the formulation.
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APPENDIX A

In the following, inverse Fourier transforms used
in Sec. 3 to derive the Green’s function are given.
The mean value theorems have been found useful in
integrating over the surface of a p sphere:

(257)3 f ®

p-dp PiDs inx
(27)3f @ —kz)zﬂ R

2772r2f (p* — k2)2
__3psin pr:l

p® sin pr
X +
[ r r? r?

f |:p2 cos pr  psin pr:|
277- rJo (p*— ki)2 r r

= (zk —_ _1.) 1k1f‘+ iﬂ_ eik",
877r r 87r

p.p; eip-r
2 _ k-z)z

3p® cos pr

(A1)
err i

1
d = L g,
(2w)‘*f PP = KR sak

(A2)

APPENDIX B

The tensor relation C,,,.;R,,

inmj

for any tensor R,,, is obtamed by using Egs. (2.1)
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and (4.3). They are given in the following:
By = CrpmiRum = (AX)*)(Ryy — iYRy, + iYRyy),
By = CipmeRpm = (AX))(Ryz + i YRy + iYRzz)a
By = CrymaRum = (AX)*)(Ry3 + iYRy),
By = CopmiRum = (AX))(Ryy — iYRyy — iYRy,),
By = CopmaRom = ((AX)*)(Rpe — iYRy; + iYRy),
By = CopmaRpm = (AX)*)(Res — iYRyy),
By = CapmiRum = (AX)*)(Ryy — i YRg),
By = CypmeRum = (AX)*)(R3e + iYRy),

By = CappaRy = <(AX)2>R33~ (B1)

APPENDIX C

The first-order contributions to the propagation
constants are given by (5.11) and (5.13) in terms of
the following functions:

8, = Zy, 5in% 0 cos? ¢ + Zy, sin? § sin? ¢ + Z,; cos? §
+ (Zy3 + Zsy) sin 6 cos ¢ cos 0 + (Zys + Zyp)
X sin 0 sin ¢ cos 0 + (Zy, + Zy2)
% sin? 0 cos ¢ sin ¢;

0 = [(1 — X)(Zss + Zsy) + iXY(Zps — Zyy)]
X sin @ cos ¢ cos O + [(1 — X)(Zys + Zy,)
+ iXY(Z3;, — Z,3)] sin O sin ¢ cos
+ (1 — X)(Zyy + Zy,) sin? 0 cos ¢ sin ¢
— (1 — X)(Zyy + Zj3) sin? B cos? ¢
— (1 — X)(Zyy + Z33) sin®  cos? ¢
— [ = X)(Zus + Za) + iXV(Zy — Z15)]
X cos2 0 + 2(1 — X)(Zy, + Zgs + Zyp)
+ iXY(Zy — Zys);

(ChH

(€2)

= B;; used in Sec. 4 03 = (1 — X)*(Zu1 + Zy; + Zsy)

+ il = X)XY(Zy — Z). (C3)



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 11

Properties of Velocity-Dependent Potentials

ErASMO M. FERREIRA
Universidad Central de Venezuela, Caracas and
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro

AND
NiLo GUILLEN AND JAVIER SESMA
Universidad Central de Venezuela, Caracas

(Received 25 January 1967)
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simple correspondence is found between the velocity-dependent problem and a static one.

1. INTRODUCTION

ELOCITY-DEPENDENT potentials have been

introduced and often used in the study of the
interaction between nucleons.:? The reason for this
was that it was found that strong repulsion at short
distances is a typical feature of the two-nucleon
system. If experimental results on the nucleon-
nucleon scattering experiments were to be explained
by a potential model using static (ie., velocity
nondependent) terms only, a hard core had necessarily
to be included among these terms. Such a highly
singular potential, infinite inside a sphere of given
radius, becomes cumbersome in calculations, especially
if more complicated systems, such as a many-body
system of nucleons, are to be treated. It was then
shown that velocity-dependent potentials and static
potentials with hard core can be equally good in
describing the interaction of two nucleons.? A static
hard core can thus be simulated by a term in the
Schrédinger equation which depends on the momentum
operator. This relation between velocity-dependent
and hard-core potentials has deserved the attention of"
several authors.®-3 The appropriate velocity-dependent
potential may be such that it only introduces a well-
behaved term in the Schrédinger differential equation,
thus avoiding the high singularity that a hard-core
potential would necessarily introduce. Thus, as far as

1 M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269
(1962).

2 A. M. Green, Nucl. Phys. 33, 218 (1962); E. Werner, ibid. 35,
324 (1962); F. Peischl and E. Werner, ibid. 43, 372 (1963); M.
Razavy, ibid. 50, 465 (1964); B. H. J. McKellar, Phys. Rev. 134,
B1190 (1964); B. K. Srivastava, ibid. 133, B545 (1964); 137, B71,
(1965); Nucl. Phys. 67, 236 (1965); A. E. S. Green and R. D.
Sharma, Phys. Rev. Letters 14, 380 (1965); F. Tabakin and K. T.
R. Davies, Phys. Rev. 150, 793 (1966).

3 0. Rojo and J. S. Levinger, Phys. Rev. 123, 2177 (1961);
0. Rojo and L. M. Simmons, ibid. 125, 273 (1962).

1].S. Bell, The Many-Body Problem (W. A. Benjamin, Inc., New
York, 1962), p. 214.

5 G. A. Baker, Phys. Rev. 128, 1485 (1962); J. Tharrats, O.
Cerceau, and O. Rojo, J. Math. Phys. 6, 1315 (1965); R. M. May,
Nucl. Phys. 62, 177 (1965); S. Sunakawa and Y. Fukui, Progr.
Theoret, Phys. (Kyoto) 34, 693 (1965).

the mathematical handling of the problem is con-
cerned, a velocity-dependent potential may present
advantages as compared with equivalent static
potentials.

The description of the interaction of elementary
particles by means of a Schrédinger equation with a
potential is just an approximate, essentially non-
relativistic, idealization of a more fundamental and
consistent description, which perhaps should be made
in the framework of the theory of interacting quantized
fields. This idealization by means of a potential modet
is suggested by electrodynamics and by gravitational
theories, but the importance of any model is based
primarily on its ability to agree with the facts of
nature. Thus velocity-dependent potentials in the
Schrodinger equation may provide models as good as
the static ones for treating the interactions among
particles in the nonrelativistic limit. The study of the
properties of the Schrédinger equation modified by
the presence of velocity-dependent terms thus seems
to us to be of importance.

The presence of new terms with momentum
operators acting on the wavefunction changes the
form of the wave equation (by introducing terms with
first-order derivatives of the wavefunction, for
example). Thus, an examination of the properties of
the new differential equation may be required, and
this paper is devoted to this task. Since it seems that
we are lacking a good understanding of the effect of
velocity-dependent potentials in terms of the usual
concepts of forces or, equivalently, of static potentials,
an effort is also made in this direction.

2. THE WAVE EQUATION

Following Razavy, Field, and Levinger (Ref. 1), we
introduce in the one-particle Schrédinger equation a
“potential” of the form

Vir,p) = Vi(r) — (4/2m)p - J(r)p @0
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consisting of a static term and a strongly velocity-
dependent part. p is the momentum operator —ifV,
and in the above expression a scalar product is formed
with its components. 4 is a dimensionless quantity, and
m is the mass of the particle. V;(r) and J(r) are real
functions of the position vector r. The potential
V(r, p) is Hermitian, parity conserving, and invariant
under time reversal.®

Another form of velocity-dependent potential
which has often been used is

U(r, p) = Uy(r) — (Aim)(p*e(r) + o (r)p?).
This form is equivalent to Eq. (2.1) if the relations

J(r) = 4o(r),
Vi(x) — (AR 4m)Vi(r) = Uy(r)

are satisfied. Then we have to discuss only one of
these two forms, and we choose Eq. (2.1).
Since

Vy = Vi(tyy — (A2m)(—ihV) - [J(x)(—iAV)y]
= Vit + (AR 2m)[J(r)V2y + VJ(r) - V],
(2.2)

we obtain a “modified” Schrodinger equation where
first-order derivatives of the wavefunction appear,
namely

(=R2m)(1 — A)V2y + (AR[2m)VT - Vy + Viy

= ihdy[dt (2.3)
or

(—=R2[2m)V - [(1 — A)Vy] + Vyy = ihdyp[dr. (2.4)

Stationary-state wavefunctions of the form y =
P(r)eER exist, with ¢ satisfying

(=F2m)V - [(1 — A)V$] + Vi = Eb. (2.5)

“Plane-wave” solutions of the form ¢ = Aeikr exist
in regions where ¥(r) = ¥V; = const, and VJ =0,
that is, where J(r) is constant, the modulus of k being
then given by

#22m)(1 — ANk = E — V. (2.6)

Let us now examine the properties of continuity of
the derivatives of ¢. Consider a volume element dv
limited by x; = x, X, = x + dx;, = y,ya =y + dy;
zy = 7, z3 = z + dz. By multiplying Eq. (2.5) by db,
integrating over this element and using the divergence

8 L. Eisenbud and E. P. Wigner, Proc. Natl. Acad. Sci. 27, 281
(1941); S. Okubo and R. E. Marshak, Ann. Phys. (N.Y.) 4, 166
(1958).
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theorem, we get, if V; is continuous in this region,

_ f:.; {([(1 — ) %%L— [(1 Y %ﬂ) dy dz

+ ([(1 — W) %L— [(1 — ) %ﬂyl) dx dz

+ ([(1 — ) g—giL— [(1 — ) g—ﬂzl) dx dy}

=(E — V) dxdydz. 2.7

Since dx, dy, dz are independent infinitesimals, we
then get, when x; — Xx,,

{(1 — 1)) %iﬂ= [(1 — ) %iﬂ (2.8)

and the same for the other coordinates. Thus,
(1 — A))oé/on is continuous when we cross a surface
orthogonal to an arbitrary vector n, and consequently
(1 — A)V4é is continuous, the same being true of
(1 — AHVy.

Multiplying Eq. (2.4) from the left by ¥*, and the
corresponding complex-conjugate equation from the
right by v, and subtracting the two expressions, we
obtain

(=R2m)V - {(1 — A)(p*Vyp — pVy*)}

= imd(y*p)/or, (2.9)
which has the form of a continuity equation
V.S = -0dP/ot

with the usual expression P = y*y for the density of
probability, and a density of current

S = (B2mi)(l — AN (p*Vy — pVp*), (2.10)

which differs from the usual expression by the factor
(1 — AN,

We have shown that the product (1 — A/)Vy is
continuous everywhere.  and S will then be con-
tinuous if p itself is continuous. The continuity of ¢
is studied in the next section.

The Lagrangian function which, by a variational

principle, leads to Eq. (2.4) is
£ = (1 — W@)Vy*- Uy — (£ — Vy*p. (211)

The commutator between ¥(r, p) and the angular-
momentum operator is

[L, ¥V(r, p)] = ifi rot(rV(r))
+ i#i(—2/2m)p - {rot(rJ(r))}p,

where in the last term the scalar product is between
the two operators p. If ¥(r) and J(r) are spherically

(2.12)
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symmetric, ¥(r, p) will commute with all components
of L and with L?, and the wave equation will be
separable in spherical coordinates.

3. CONTINUITY OF THE WAVEFUNCTION

Let us drop for a while the static potential V,(r)
from our equation. From Eq. (2.3) we see that if
J(r) is continuous in a point, ¢ and all its first and
second derivatives will also be continuous there. We
want to obtain information on what happens in a
point where J may have a finite discontinuity. Let us
consider that, in the neighborhood of a certain
point, J depends on a single Cartesian coordinate x,
and may be discontinuous on this variable. In other
words, locally we have a one-dimensional wave
equation

of[l — AJ(x)$/ox} _  2m
0x TR

E$.  (3.D)

Let us call
x(x) = [1 — AJ(x)]0¢/0x. (3.2)

We have already shown in Eq. (2.8) that x(x) is
continuous. The wave equation, Eq. (2.5), can be
written

0x/0x = —(2mE|K®)é. 3.3)

By derivation of Eq. (3.3), we obtain, making use of
Eq. (3.2),

[1 — AJ(X)] d2yfdxt = —(mE[RD)y.  (3.4)

This can be written in the form of a usual Schrodinger
equation for energy E

d*yfdx* = 2m|R*)[U(x) — E]y 3.5)

with a potential
U(x) = —EM(X)[[1 — AJ(x)] (3.6)

which depends on the parameter E. Since in Eq. (3.5)
no first derivatives occur, we have that, even if AJ
suffers finite jumps, y and dy/dx are continuous (as in
the usual Schrédinger equation). From Eq. (3.3), we
then obtain that vy is continuous through a finite
discontinuity in AJ.

4. SINGULARITIES OF THE WAVE EQUATION

The “potential” U(x) is singular wherever 1J = 1.
Let us take Eq. (3.1) and investigate what happens
with the wavefunction ¢ in such singular points. Let
us suppose that 1 — AJ(x) passes through zero in a
certain point x,. If the first derivative of 1 — A/ in
this point, f(x,), is not zero, we have in the neighbor-
hood of x,,

1 — A(x) & (x = x0) f'(x0) + O((x — x)*),
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and Eq. (3.1) becomes, in this neighborhood, of the
form

(x — xo) d2pjdx? + djdx = Ap,  (4.1)

4.2

where
A = 2mE[Rf'(x,).

The general solution of this equation is a linear
combination of a regular solution

¢ = ianA"(x — Xxo)", (4.3)

and an irregular one, which is of the form

do= 410 In |ACx = x| + 3 b,d"(x = 50" (44)
Thus, the general solution
$(x) = Cigy(x) + Cotpa(x)

behaves like In|A4A(x — x;)| when x-— x,. This
solution is acceptable since, in spite of increasing
without limits as x approaches x,, it is square
integrable in this region (in fact, it is integrable even
when raised to any finite power).

Thus, if AJ(x) has a nonzero derivative when
passing through the value 1, the wavefunction is
defined by Eq. (4.5) in this region. For x & x,,
#(x) in Eq. (4.5) is an even function of (x — x,),
since the dominant terms give

4.5)

$(x) ~ Ciay + Coay In [A(x — x)|. (4.6)

Then, we can say that ¢(x) is “continuous” when we
cross Xx,; that is, it assumes the same values when x
tends to x, from either side.

If AJ jumps through the value 1, that is, if A/ is of
the form of a step from a value lower than 1 to
another one higher than 1, we can think of it as the
limit of a linear increase, whose slope tends to
infinity. Then, 4 — 0, and in the interval (from x, to
Xy, as shown in Fig. 1)in which the “jump” takes place,
the wavefunction is well represented by Eq. (4.6).
Since ¢(x) in Eq. (4.6) is even and the solution must
be continuous whenever AJ % 1, we have that its
values at the right and left of the jump tend to be the
same. We then conclude that the wavefunction is
continuous through a finite jump of 4J(x), even if this
jump includes the singular value AJ = 1.

Let us suppose now that in the Taylor development
of 1 — AJ(x) about its root x,, the first derivative is
also zero, that is,

1 — M) ~ (x = X)f"(x)/2! + O((x — x,)%),
4.7
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FiG. 1. A finite “‘jump” of the functions AJ(x) may be considered as
the limit of a linear increase, whose slope tends to infinity.

where f"(x,) is the second derivative of 1 — 4J(x) at
the point x,. The wave equation in the neighborhood
of x, then becomes

(x — xo)? d%p)dx® + 2(x — xu) dp/dx = Bd, (4.8)

where
B = —(2mE[R)!/f"(x))s

and again x, is a regular singular point. The general
solution of Eq. (4.8) is of the form

¢ = Cy(x — xp)™ + Co(x — Xo),

(4.9

(4.10)
with

g1 = (=1 + [1 + 4B}h)
and

g = H—1— [1 + 481,

where by [1 + 4B]* we mean the square root of
I + 4B whose real part is positive. Let us discuss the
behavior of this solution in the several possible cases.

1. B> 0. Then, g, < —1 and to obtain a finite
solution we must put C, = 0. Since ¢; > 0, we have
é(x) — 0 as x approaches x, from either side. Thus, ¢
is continuous in x,, but the limit of the quotient of the

\ /

FiG. 2. The “‘static” potential U(x), ‘‘equivalent” to a velocity-
dependent one, presents two second-order singularities. We call it
‘‘static”” because there are not in U(x), defined by Eq. (3.6), terms
depending on the linear momentum operator, although the energy
E of the particle under consideration enters in the expression of
U(x) as a parameter.

Uixy
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values of ¢ in the two sides is not unity, since

bulbr ——> (=1, @11

where
¢p= lim ¢(x) and ¢; = lim &(x).

&= 29+0 x—xp—0

Since in general ¢, is a nonintegral, there is a difference
of phase between the values of the wavefunction in
the two sides of x,, and this difference of phase does
not approach zero. On the other hand,

¢ = Cigi(x — xp)?

and we have that

(4.12)

¢ —>0
w——m)o

if ql - 1 > 0,
[¢ | —> o if g —1<0.
Z‘_’IO
Since we have ¢'/¢ — g,(x — x,)%, there comes

e fon _ _y
b1l 4

Thus, if the quotient of the values of the wavefunction
on the two sides of x, tends to exp (id), the quotient
of its first derivatives tend to exp {i(é + =)}.

On the other hand,

2= = A ~ [f"(x0)[21]Cigx(x — x0)™*" (4.14)

goes to zero on both sides of x,, and is continuous
[as we have seen in Eq. (2.8)]. The potential which
appears in Eq. (3.5) is, in the neighborhood of x,,
given by

(4.13)

U(x) = —2! E/(x — xo)*f"(xo) = F*B[2m(x — x,)%,
(4.15)

and will be repulsive in this case of B > 0. It corre-
sponds to a function AJ(x) which touches the line
AJ =1 in the point x,; the curve of AJ(x) has a
minimum at this point in the case £> 0 and a
maximum if £ < 0.

For a given energy E, the larger the curvature
radius of 1 — AJ at x, (that is, the smaller f”), the
larger is the value of B. As B increases, the exponent
¢, becomes a larger positive number, and the wave-
function will tend to zero more rapidly (corre-
spondingly, the ill-behaved part with exponent ¢,
will become more divergent, since ¢, becomes more
and more negative). Thus, for a flatter curve, the
wavefunction tends to zero more rapidly. The potential
in Eq. (3.6) then becomes more and more strongly
repulsive.

As f” reaches the value zero, the curve for 1 — AJ
will present an inflection at x, if /" 0, and a
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maximum or minimum if f” = 0 and f" 0. The
potential will be singular with a higher power of
X — Xx,; if this power is even, the potential is strongly
repulsive or strongly attractive in the neighborhood
of x,; if the power is odd, it is repulsive in one side of
xo and attractive in the other.

The fact that we have to put C, = 0 to obtain an
acceptable physical wavefunction, implies that the
existence of the second-order singularity at x,
determines the wavefunction uniquely (up to a
constant C,). If there are two singular peints of this
kind, only for certain values of the energy E there
would be a continuous physical solution for the
differential equation extended over the region between
the two points. This would determine eigenvalues for
the problem. For E > 0, this case will happen when
we have two successive contacts of 1 — AJ(x) with
the value zero such that f” < 0 (that is, 1 — AJ
touches zero from below). For £ < 0 we must have
two contacts with zero from above. Both cases
correspond to U(x) being a singular repulsive
potential at two different points (Fig. 2). Let us think
in terms of this “equivalent” potential. According
to Eq. (4.14), y goes to zero in a singularity of the type
given in Eq. (4.7). Then, as we know from the
properties of the Schrodinger equation, a solution x
exists between two such points of second-order
singularity if U(x) < E somewhere between these two
points. But in a situation such as that of Fig. 3,
corresponding to £ < 0, we have that between x;
and x,, U(x) as given by Eq. (3.6) is always larger
than E. Thus, there is no solution of negative energy
for such a problem. In the case of £ > 0, we have a
situation as that of Fig. 4. As can be seen from
Eq. (3.6) U(x) is again larger than E everywhere
between x; and x,. Since solutions can exist at the
right of x, and at the left of x,, the region between
these two points acts as a kind of hard-core potential.

2. —} < B<0. The general solution of the
differential equation is again of the form given in
Eq. (4.10), with ¢, and g, having values in the intervals
—31<¢, <0 and —1 < g, < —}. Since solutions
behaving worse than (x — xo)~% must be eliminated
(because they are not square integrable), we must
again put C, = 0. The accepted solution

¢ = Cy(x — xp)

diverges as x — x,, but | |¢|> dx can be defined in any
interval. We again have here that ¢ suffers a change of
phase as we cross the singularity [it is multiplied by
(=D as we pass from x, — 0 to x,+ 0]. The
modulus of the derivative |¢'| increases infinitely as
we approach x,, and Eq. (4.13) is still valid. Again
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Fi1G. 3. The function 1 — AJ(x) touches, from above, the value
zero in two different points. A particle, with mass m and energy E <
0, which suffers the velocity-dependent potential (—A/2m)p,J(x)p.,
“‘encounters” the ‘“‘equivalent static” potential U(x), given by Eq.
(3.6) and shown in Fig. 2.

v = (1 — A)$" is continuous as
through zero at the singularity.

The “equivalent” potential U(x) is now attractive,
since B is negative. But the wavefunction is not an
oscillating function inside this infinitely deep potential
well. This can be understood by remarking that the
intensity B of the potential is determined by the value
of the energy. With B > —0.25, for any given value of
the energy, the range and depth of the potential will
not be sufficient for the wavefunction to be able to
oscillate. If we increase the value of the energy so as
to tend to have a smaller wavelength and at the same
time a broader region for the wavefunction to oscillate,
the potential well becomes at the same time narrower
and less deep.

3. B < —}. The general solution of Eq. (4.8)in the
neighborhood of x, is of the form

1 — AJ passes

¢ = Dy(x — x) i 4 Dy(x — x) 7, (4.16)

where € = }|[1 + 4B]*| assumes values ranging from
zero to infinity. The wavefunction oscillates infinitely

1-2J

FiG. 4. The function | — AJ(x) touches, from below, the value
zero in two different points. A particle, with mass m and energy E >
0, which suffers the velocity-dependent potential (—4/2m) p,J(x)ps,
“‘encounters” the ‘‘equivalent static”’ potential U(x), given by Eq.
(3.6) and shown in Fig. 2.
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many times near x,, and is not square integrable in
this neighborhood. The expression

x=(1—AaN)¢
~ )21 — %M Di(— + ie)(x — xp)"
+ Dy(—% —ie)(x — x)7] (4.17)
is continuous at the singularity, oscillating infinitely

many times with decreasing amplitude as we approach

xo .

5. EFFECTIVE POTENTIALS: UNIDIMENSIONAL
SQUARE WELLS AND BARRIERS

The first-order derivatives which appear in the
wave equation (2.5) can be eliminated by a suitable
change of function. Let us write

n = [1 — M.
We obtain in Eq. (2.5)
—(B22m)V2y + Wy = En,

(5.1)

(5.2)
with
W = (i22m[1 — V[l — AJ]E)

+ (Vy — EAD/(1 — AJ). (5.3)
Equation (5.2) has the form of a Schrédinger equation
with an effective potential W, in which the energy
enters as a parameter. W is singular in points where
AJ = 1, as the differential equation, Eq. (2.5), from
which we started. If J has finite discontinuities, W
will contain ¢ functions and first-order derivatives of
0 functions, and these terms will complicate the
analysis of the behavior of the solutions of Eq. (5.2).
Thus, in spite of the simplicity of the relation between
n and ¢, Eq. (5.1), and of the apparent simplicity of
Eq. (5.2), it seems that we do not gain very much from
this transformation.

For the case of one-dimensional problems, the
first-order derivatives of the wavefunction can be
eliminated by introducing the auxiliary function x(x)
defined by Eq. (3.2), which obeys Eq. (3.5). Very
simple relations exist between important properties
of ¢ and y. Excluding points for which 4/ = 1, which
were discussed in the previous section, y and its
derivatives of first and second order are continuous;
physically acceptable solutions exist, for which these
quantities are finite everywhere. By Eq. (3.2), the true
wavefunctions, ¢ will also be finite in all space, and
thus, physically acceptable. Let us see what occurs
with the asymptotic behavior of these solutions.

If ¢ is a typical bound-state wavefunction, be-
having as e~** for large enough values of x (we suppose
that AJ goes to zero at infinity, or at least is bounded
there), then y is also of the same form, representing
also a bound-state wavefunction, with the same

FERREIRA, GUILLEN, AND SESMA

binding energy. On the other hand, if ¢ is a typical
positive-energy wavefunction, behaving for large
|x| as

¢ =~ sin (kx + 0), 5.4
then y will be

y ~ sin (kx + 6 + 3m), (5.5)

with a phase shift increased by =, and the same wave-
length. Properties of the system described by the
Schrodinger equation with velocity-dependent poten-
tial can then be deduced from the study of the
Schrodinger equation with the static potential U(x)
given by Eq. (3.6) (the potential U is called static
because momentum operators do not appear on it,
although the energy enters in it as a parameter).

In a simple problem of square wells or barriers, with
AJ(x) being a constant AJ; in a certain interval and
zero outside, the derivatives of AJ in the extremes of
the interval introduce extra J-function factors, which
make the wave equation a little cumbersome to
analyze. We have already used properties of the
auxiliary function y to study the properties of
continuity of ¢ as we cross the walls of barriers and
wells. The static potential U(x) is zero outside and
U, = —EMJ/(1 — AJy) inside the interval.

For E > 0, the potential U, is repulsive for AJ; > 1
and for 4J, <0, and attractive for 0 < AJ, < 1.
The opposite is true for negative energies. For E < 0
and AJ, < 0, the potential is attractive, but U, > E
and no bound-state solutions can exist since the
energy is below the bottom of the well for all x. Bound
states can then only exist for AJ, > 1.

As AJy,— 1, |U,| increases without limit, U,
becoming a hard core or an infinitely deep well. We
have the case of scattering by a hard-core potential
when E > 0 and AJ,— 1 4+ 0. We have the case of
scattering by an infinitely deep well when £ > 0 and
AJy— 1 — 0. When E > 0, as AJ; passes the value 1
from higher to lower values, the potential U changes
suddenly from + co to —co. We have bound states in
an infinitely deep well when E < 0, 2J,— 1 4 0.

In Eq. (3.1), we see that if 1 — AJ; =10 in an
interval, we have ¢ = O there. This is the typical
behavior of the wavefunction in a hard-core problem:
it equals zero in the walls and is zero inside the core.
If 1 — AJ, is very small negative, Eq. (3.1) has a
violently oscillating solution, characteristic of the
very deep well.

6. SPHERICALLY SYMMETRIC PROBLEMS:
AN EQmVALENT STATIC POTENTIAL FOR
THE S-WAVE CASE

With ¥V, and J in Eq. (2.1) depending only on the
radial distance r, the wave equation can be separated
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in partial waves by putting

(r) =lE R(NY,..(6, 9), (6.1)
where Y, ,.(6, ¢) are the spherical harmonic functions,
and the radial part satisfies the differential equation

(1 = AD{R] + 2/NR] — [I(1 + D/r*IR;}
+ [d(1 — AD)/dr]R; + (k* — UYR, =0, (6.2)

with k2 = 2mE|R2, U, = 2mV, R

Due to the term —A[dJ(r)/drl[dR,/dr], Eq. (6.2)
cannot in general be written in the form of a usual
Schrodinger equation. We now show how we can do
it in the case of /=0, with V; = 0. The s-wave
radial equation is then

d[(1 — AJ)dR,/dr)/dr

+ @Jr)(1 — M) dR,jdr + k2R, = 0. (6.3)

Let us introduce a new function

2r = (1 — AJ)dRy/dr. (6.4)

We obtain

dygldr + 2xglr + k*R, = 0. (6.5

Taking derivatives of this equation, and eliminating
dR,/dr by using Eq. (6.4), we get

dr  2dxr k? 2
CAr 2R, (K2}, —0, (6.6
drt + rodr + (1 — A rz)xR (6.6)
or
d? 2d
AR | STIR 4 1 UMlge =0, (6)
dr r dr
where
U(r) = 2Jrt — KI(0[[L — (). (6.8)

Now, Eq. (6.7) has the form of an s-wave radial
Schrodinger equation with potential (42/2m)U(r), or
alternatively, by considering 2/r® = 1(1 + 1)/r? as a
centrifugal term, we can consider it as a p-wave radial
equation with a simpler potential of assumed finite
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range,
2 -2 2
My = — H2MIAD) (6.9)
2m 1 —AJ(r)
In terms of a reduced wavefunction
n(r) = ryg(r) (6.10)
Eq. (6.7) becomes
d?p,/dr® + k2, — K2u(r)y, — 2/r))y, = 0. (6.11)

Properties of the wavefunction for usual static
potentials will then be valid for x5, and the behavior
of R, can be obtained from Eq. (6.4) or Eq. (6.5). If
R, is a bound-state wavefunction, that is, if it has the
form F(r)e—*r for large r [with (Fr) tending to a
constant as r — o], then x, has the form G(r)e=*" for
large r [where G(r) tends to a constant; we assume
that AJ(r) becomes a constant for large r]. Thus, x5
will also be the wavefunction for a bound state, with
the same binding energy.

If Ry(r) has an asymptotic behavior

Ry(r) &~ Ae'™ 4+ Be™%*7, (6.12)
then, the asymptotic behavior of y, is
An ~ Ae™*" — Be~*", (6.13)

The phase shifts in the two problems differ only by a
constant =, that is, if

Ry &~ (1r) sin (kr 4+ &y), (6.14)
then

tn~ (1r)ysin (kr 4 8 + 3m).  (6.15)

Thus the values of the S-matrix element corre-
sponding to / = 0 differ only by a sign in the two
cases of the velocity-dependent potential and the
equivalent static problem with potential U.
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The substitutions leaving the character of the representation of the group SU, invariant are con-
sidered. The phases induced by these substitutions on the basis functions are established. The substitution
giving the contragrediency transformation has been found. This transformation is interpreted as the
reflection of the subspace of commuting operators and the corresponding coordinate systems with
respect to the rest subspace. The application of the substitution group to the resolution of multiplicity

problem in the case of SU; is demonstrated.

I. INTRODUCTION

N the theory of representations of the group SU,,
an important role! is played by the substitutions

(1a)
(1b)

joi=—j—-1,

m—m= —m,

Jj(j+ 1) and m being proportional to the proper
values of the Casimir operator and of one of the
infinitesimal operators, respectively. These substitu-
tions are geometrically interpreted as the reflection of
the coordinate system (la) and that of the space (1b)
with respect to the plane of the other two infinitesimal
operators. This process is called mirror reflection.
It brings the basis functions to their contragredient
ones so that the invariant corresponding to the scalar
product takes on the form

(1jmy [jm)) = 3 |jm) | jm). (2)

In generalizing® the procedure mentioned above to
the group SUj, instead of (1) one obtains the sub-

stitutions
Aol=—1=2
p—>pg=—p—12 (3a)
I—»T=—-I1—-1,
M—>M=—-M
_ (3b)
Y—>Y=-Y,

where 4 4+ u and u are the lengths of two rows of the

T A. P. Jucys and A. A. Bandzaitis, The Theory of Angular
Momentum in Quantum Mechanics (Mintis, Vilnius, Lithuanian
S.S.R., 1965).

2 A.P. Jucys, A. V. Karosiene, and S. J. Alifauskas, JETP Pis’ma
v Redaktsiyu, (1965) [English transl.: JETP Letters 1, No. 4, 17
(1965)].

Young pattern characterizing the representation, /
and M are quantum numbers of isospin (SU,), and
Y is the hypercharge. In this case the corresponding
expression (2) is obtained by substitutions: j — Au,
j— i, m—IMY, fii— IMY. Geometrically, (3a)
is interpreted as the reflection of the coordinates of
the weight space and (3b) as that of the weight space
itself with respect to the remaining part of the space
of the group.

The further attempts® to generalize these procedures
by following the examples of G, and SU, resulted in
revealing a whole group of substitutions that leave
the character of the representation invariant. This
group of substitutions has been found to be isomorphic
to the Weyl group.

In view of usefulness of the aforementioned
substitutions, it is expedient to generalize them to
any special unitary group. The main aim of this paper
is to present some results obtained by generalizing the
substitution group to SU, for any value of n. This
question is considered in the next section.

As was stated by Alifauskas, Rudzikas, and
Jucys,® the contragrediency transformation is very
closely connected with the group of substitutions. For
G, it is just one element of this group, and for SU,
it is one element followed by the permutation of 4
and u. The contragrediency transformation in SU,
is considered in Sec. III. The geometrical interpretation
of this contragrediency transformation, which is the
generalization of the mirror reflection symmetry!
of SU,, is given there as well.

In the last section, by following the example of
SU,;, we demonstrate the utility of the substitution

8 8. J. Alisauskas, Z. B. Rudzikas, and A. P. Jucys, Doklady Akad.
Nauk SSSR 172, 58 (1967).
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group for solving the multiplicity problem. By this
another point of view will be given to the methods of
attacking the multiplicity problem which are given
recently by Baird and Biedenharn® and by Biedenharn,
Giovannini, and J. D. Louck.?

II. SUBSTITUTION GROUP OF SU,

The expression, as given by Weyl,® for the character
of the representation of SU, is

X(lla )‘Za Tt ]‘n)
= |4 (n, K, By )1 A, Koy s @)y (9)
where
Ag=exp{il(n+ D2 —k + X}, (9
by = my, — 3 Zin (6)

=1 R

my,, being the length of kth row of the Young pattern
for the Weyl-basis tableau of the irreducible repre-
sentation.

The permutation of rows of determinants in (4)

1 2 +++ k +-+ n
(11 L wo o ln) @

is equivalent to the substitutions
My >y, =my, — L + k. (8)

Transformations (8) constitute the group called
the substitution group,® which is isomorphic to the
Weyl group of SU,, and, obviously, isomorphic to the
symmetric group S,. The substitutions (8) have been
found by Baird and Biedenharn® in examining the
invariance of the Weyl dimension formula. It is
obvious, of course, that the substitutions leaving
invariant characters of irreducible representations do
not affect the dimensions of these representations.

i—1 k-2
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The elements of the substitution group (8) induce
the similarity transformation on the representation.
This unitary transformation induces the phase factors
of basis functions. These basis functions are charac-
terized by the Gelfand’ pattern

ml,n m2,ﬂ '"vn—l,n mn,n
m) = My g1 * " Mz gy My_y,n-1 , (9)
myq
where
M1 2 My 2 Mgy g (10)

It is seen that the substitutions (8) affect the first
row of the Gelfand pattern only. It is evident that
similar substitutions applied to the other rows of the
Gelfand pattern do not affect the character of the
irreducible representation, because they leave in-
variant the characters of the representations of
corresponding subgroups SU,_, (z < n) of the group
SU,. It is the phases of basis functions which are
affected by these substitutions. For this reason our
task is to establish the rules according to which the
substitutions

my—>my=m,;—hL+k (k<i=12-,n)

(1D
change the phases of the basis functions.

We use Baird and Biedenharn® phase system. In
this system, the matrix elements of the infinitesimal
operators E, , , are positive. We require that they
remained positive under all substitutions (11). At
first we bring the formula (60) of Baird and Bieden-

harn® to the form

k-1
Ek.k—l |(m)> = zlAz |(m)>m,~,k_1—» my,p-1—12 (12)

i

I];(m!,k—2 — My —Jj+ i) H (Mypr — Mo +J — 1)
i= =1

i i—1

11 (M
j=1

j=i+1

i k
l—li—('nj,k — My, —j+i+ 1)1_[ (Mg —myp+j—i—1)
=

k-1
=My —j+ i) H (Mypor — Mypa +Jj — )

5

j=i+1

(13)

i1 k=1
H(m:i,k—l —My—j+i+1) H (Mg —my,+j—i—1)
j=1

In the Gelfand pattern on the right-hand side of (12),

m, ,_, must be replaced by m,, , — 1. It is worth

4 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 5, 1730
(1964).

5 1. C. Biedenharn, A. Giovannini, and J. D. Louck, J. Math.
Phys. 8, 691 (1967).

$ H. Weyl, The Classical Groups (Princeton University Press,
Princeton, New Jersey, 1939).

j=it1

noting, that all multipliers in (13) are made to be
positive. After performing substitutions of the type
(11), some of these multipliers turn into negative ones.
These last must be made positive by taking out of the

* G. E. Baird and L. C. Biedenharn, J. Math. Phys. §, 1723 (1964).
8 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449
(1963).
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square root the imaginary unit { for each negative
multiplier, taking into account its location (in
numerator or denominator). The phase of the basis
function must be such that, together with these
imaginaries, gives a positive sign to the matrix element
of E ;1.
In formulating the rules found by which the

exponent

p=2my; (14)
of the phase factor

0= (-1 (15)
is to be constructed, we use the term ‘““permutation”
instead of ‘‘substitution,” because each substitution
(11) brings the parameter m;; into another position,
the appearance of inhomogenous term k — [, being
unessential. These rules are as follows.

I. When the permutation takes place in one, say
the kth, row of the Gelfand pattern, then

(a) ¢, contains the parameters of adjacent rows
(itis & — 1 and k& + 1) only.

(b) ¢, is additive with respect to the cycles of
permutation.

(c) For a given cycle of permutation in the kth row,
@, contains m, ., and m,_,, ;, when the vertical
line drawn through the positions of these parameters
cross the permutation lines of one direction an odd
number of times, the permutation line being an
arrowed line going from the old position of m, to
the new one.

(d) The presence of m,, in the phase factor may be
neglected, because the phases are not defined with
respect to these parameters, at least not until the
phases of the Clebsch-Gordan coefficients are defined.

II. When permutation takes place in two or more
rows of the Gelfand pattern, then

(a) At first @ is constructed according to I as the
sum of contributions of each row subjected to per-
mutation.

(b) If the permutation takes place in adjacent rows,
the following corrections must be introduced:

Through each point taking part in permutation,
draw straight vertical lines crossing adjacent rows on
both sides (upper and lower ones). The parameter
m,; must be included in ¢, in addition, if the vertical
line drawn through the old position of m;; crosses an
odd number of times the permutation lines on two
adjacent rows having arrows of the same direction as
permutation line of m,; and not crossed by the
vertical line drawn through the new position of m;;.

(c) The parameters m;, may be neglected in con-
structing the phase factor on the same grounds given
in L

AND A. P. JUCYS

| |
k-7 i LZ lJ I 5 l7

FiG. 1. Demonstration of the construction of phase factor,
when the elements of kth row of the Gelfand pattern are permuted
by the cycle (143628).

III. When permutation takes place in the Gelfand
pattern with parameters already permuted, then the
best way to construct the phase factor is this one:

(a) According to I and II, the normal Gelfand
pattern is to be restored.

(b) The new permutation covering the first and
second one is to be fulfilled according to I and II.

We illustrate I{c) and 1I(b) by examples. In Fig. 1,
the three rows (k — 1, and k + 1) of the Gelfand
pattern are represented. The first subscript of m,; is
indicated at each point of the diagram; the second
subscript, labeling the rows (counting from the
bottom of the pattern), is given on the left-hand side
of the diagram. The transfer of the parameters by the
cycle (143628) of permutation [substitution (11)] is
indicated by full arrowed lines showing the directions
of displacement of parameters. The broken vertical
lines drawn through the positions of parameters
My and my_; ., ((=1,2,--+,7) crossing the
permutation lines show that

O =My + My + Mgy + Mypg + Mgy

+ Myppn + My pn + My geiq.

(16)

Given in Fig. 2 are the same rows of the Gelfand
pattern as in Fig. 1. Here we illustrate the construction
of phase correction arising from the kth row because
of the permutation being done in adjacent rows. This
correction is

an

Here m, , is present because the vertical line drawn
through m, , crosses the permutation line 1 —2 on
the row k + 1, which is not crossed by the line drawn
through my . (the new position of m, ,). m, , is absent,

Avp = my, + my .+ Mgy

Fi1G. 2. Demonstration of the construction of correction to the phase
factor arising from the kth row of the Gelfand pattern.
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because, the vertical line drawn through its position
crosses two permutation lines (one on each adjacent
row) that are not crossed by the vertical line drawn
through m, .. Further, for example, m, , is present,
because the corresponding vertical line crosses three
permutation lines which are not crossed by the line
drawn through m, .

Concluding this section, we note that in the special
case of SU,, we have

A= myg — My, po= My (mg =0),

1= (myp — my)2, M= my — (my+ my)2,

Y = myy + myy, — 2(myg + mg)[3. (18)
Then (11) gives the substitutions (2) of AliSauskas,
Rudzikas, and Jucys.?

III. CONTRAGREDIENCY TRANSFORMATION

We seek a substitution that leads to a contra-
gredient representation without any phase factor, like
that done! in the case of SU,. We find that this
requirement is satisfied by the substitution

(19)

In order to verify this statement, we must show that

{(m)] = |(m))* = |(n). (20)

Here under (/) is understood the Gelfand pattern in

Eq. (9) in which all parameters are changed according
to Eq. (19). If Eq. (20) is correct,

I= 3% [m)i(my

myi{j# n)

My —> My = —my; + 21 —j—n.

(21)

is invariant. This means that the result of operation
by any infinitesimal operator must be zero; that is,

EJ= 2 {{(m+ x)|E () |(m + x))|(m))

mli#n)
+ {(m + X)| E, [(m)) (@) |(m + x))}  (22)

must vanish. In order to visualize this in the second

term in braces, we substitute m; — m,; — x;;. Then
we have
El= 32 {{m—x)|E/(m)

mi;(i#Fn)

+ {(m)] E, |(m — x)} [(m — x)) |(m))- (23)

Taking E; ;_; and using (12), we find that the first

matrix element in braces equals the second one with
a minus sign, and thus (23) vanishes.

The substitution (19) can be carried out in two steps:

(24a)
(24b)

my—>m;_jq;+2i—j—1,

My i1,y —> —My —n+ L
The first step is the special case of (11) and the

second one coincides up to a constant term with the
substitution (11) of Baird and Biedenharn? It is
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found that ¢ in (14) is additive for these substitutions
and equals (up to terms containing m,,,)

n—

1 J
Po=@p =2 2 M. (25)
j=1 i=1
This coincides with the phase of the conjugation
operation of Baird and Biedenharn” with m,,, omitted.
Evidently ¢, and ¢, cancel one another and we
obtain the contragrediency transformation without
any phase multiplier, which was already pointed out.
It is easy to see that (24b) gives
1 1 k41
= DMy — ——— DMy — —M,, (26
k& k +1 12::1 i+l k ( )

where M, (k=1,2,--+,n—1) are the proper
values of the commuting infinitesimal operators (H,).
For this reason generalizing the geometrical inter-
pretation of (1b) of SU,, we interpret the substitution
(24b) as the reflection of the weight space with respect
to the rest part of the space. On the other hand, we
interpret the substitution (24a) as the reflection of the
coordinate system of the weight space with respect to
the coordinate system of the remaining subspace.
Consequently, the contragrediency transformation is
to be interpreted as simultaneous reflection of the
weight space and of corresponding coordinates with
respect to the rest part of the space. This reflection is
the generalization of mirror reflection symmetry
considered by Jucys, Savukynas, and Bandzaitis® in
the case of SU,.

We can concentrate our attention on the subspace
of commuting operators only, because quantities
corresponding to these operators can only take-on
definite values. The above-stated reflection is the
simultaneous inversion of this space and of a corre-
sponding coordinate system. On this occasion, attention
must be called to the possibility of an alternative
interpretation of the symmetries connected with the
quantities corresponding to the commuting operators.

We are going now to give a geometrical interpreta-
tion of the Young pattern for the Weyl basis tableau
for contragredient representation. It is seen from Eq.
(19) that all parameters are negative in contra-
grediently transformed states. It is possible to make
the tableau a lexical one by a suitable choice of the
diagram. Such a diagram is shown in Fig. 3. The left
part of this diagram is obtained from the normal
Weyl basis tableau by reflection with respect to the
central line. This part of the diagram is lexical when
read from right to left. The right-hand part of this

% A. P. Jucys, A. J. Savukynas, and A. A. Bandzaitis, Liet. Fiz.
Rinkinys 5, 171 (1965).
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F1G. 3. The Weyl basis tableau for the contragredient representation
of SU,.

diagram represents nonhomogenous terms of (19).
Lengths of these rows are 2n — 2, 2n — 4, - -+ . This
part of the pattern does not take part in symmetry
operations. When going to the subgroup SU,_,, it
is necessary to take away all squares filled with the
index n on the left- and right-hand sides from the
central line. Subsequent shrinkage of the diagram is
obtained by removing the antisymmetrical part of the
remaining diagram in order to go over from U,_, to
SU,;.

Y (A+a,u+b)

AND A. P. JUCYS

In the special case of SU;, (18) and (19) give the
substitutions (3). It is evident that (24a) corresponds
to (3a), and (24b) to (3b).

IV. THE MULTIPLICITY PROBLEM
FOR SU,

Limiting ourselves to the group SU;, we show how
the substitution group can be used for the solution
of multiplicity problem. Our demonstration is founded
on the requirement of invariance of the coupling
scheme with respect to the substitutions (11). This
means that the additional quantum number in the
Clebsch-Gordan coefficient must be conserved under
these substitutions.

In a manner similar to that used in the case of SU,
by Jucys, Savukynas, Bandzaitis, Karosiene, and
Naslenas!® for isoscalar factors of SU;, we obtain
relations

Aw) (G'u p:l (272)
Iy ry I+kY+Y
, —3) (W) (+b —A—p—3—a—b),
- e[ = /4 g 27b
26( ) [ ry’ I+kY+Y (270)
B (— 1) [( —A—pu=32 (u) (—/1—/-‘—3—0—b,l+a)p’j| (27¢)
ry’ I4+kY+Y
lfz _y (—p — 2, —) -2 (z'”:,) (—g—2—b,—1— 12 — a)p] (27d)
'y I4+kY+Y
___ —k _ e _
Zé" [(l+,u+l—y 2) w)y G+p+1+a+b—p-2 b)p,} (27¢)
IY ry’ I+kY+Y
rew ¥’
w8 TP (=A=2 A 4+pu+ ) QW) (mA—2—a,A+pu+1+a+b),
=25pp'—1) R , 279)
< 0% Iy I+kY+Y
(Vop) ¥
LT T O ) G+ aut b),
=(—=1) i . (28)
Iy 1y I—-kY+Y
Here 0, is a unitary matrix. In (28) it is absent be- the isoscalar factors for (A'u’) = (11) as given by

cause A and u do not change in any way in this case.
By the way, it must be mentioned that (28) is obtained
on the supposition that in the rules given in Sec. II,
the parameters m,,, are included.

Now our problem is to find a definition of Clebsch-
Gordan coefficients such that 6,,. in Eq. (27) will be
diagonal. We observe that this condition is fulfilled by

10 A, P. Jucys, A. J. Savukynas, A. A. Bandzaitis, A. V. Karo-
siene, and E. P. Naslenas, Liet. Fiz. Rinkinys 4, 173 (1964).

Hecht and Kuryan, Lurié, and Macfarlane!? in
the form of algebraic expressions.

Let us construct an operator of the form
T = POV (O (14D ™. (29)

where (10), (01), and (11) represent operators 710,

1t K. T. Hecht, Nucl. Phys. 62, 1 (1965).
2 J. G. Kuriyan, D. Lurié, and A. J. Macfarlane, J. Math. Phys.
6, 722 (1965).
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TV, and TUY, respectively, the last one being from
the direct product of two infinitesimal operators. For
this reason two kinds appear. Equation (29) is the
direct product with maximal weight, which is sym-
bolized by P. Such a coupling can be realized with the
help of the formulas of “stretched” Clebsch-Gordan
coefficients given by Sharp and von Baeyer!® and
Ponzano.™ It may be pointed out that the multiplicity
of the representation does not exceed

mn(r+1L,A+Lpu+lL,i4+a+Lu+b+1)
(30)
and that r is

min(/’l’,‘u',zl + u ;2a —-b ,ﬂ. + 2u ;a —2b)’

(31

where a’, b’ are homogenous parts of substitutions
(2) of Alisauskas, Rudzikas, and Jucys® which one
obtains from (11), as was mentioned at the end of
Sec. 11, and which are used in (27).

The matrix elements of the operator (29) with
maximal value of I” are proportional to the Clebsch—
Gordan coefficients

[(lﬂ) (A'u") (A+a,p+b), }
1Y 3 +u)Y I+3X +u)—u+te,Y+Y 1
(32)

which vanish unless ¢ is a nonpositive integer. u and
u — ¢, where

0<u,u—c<r, (33)

label the Clebsch-Gordan coefficients with all other
parameters fixed. This gives the triangular matrix of

13 R, T. Sharp and H. von Baeyer, J. Math. Phys. 7, 1105 (1966).
14 G, Ponzano, Nuovo Cimento 41A, 142 (1966).
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the form
x c 0 1 2 r—1 vr
u —
X x X X x
1 0 X X X X
0 0 X X X
ce (34)
r—1 0 0 0 X X
r 0 0 0 0 X.

When the multiplicity is less than r + 1, the corre-
sponding number of upper rows of (34) are to be
filled by zeros.

It may be shown that the triangular character of
(34) is not spoiled by substitutions (11). Consequently,
d,,, must be diagonal and because of reality and
orthonormality of the Clebsch~-Gordan coefficients

they are of the form
OX = (—1)=. (35)

For the phase system of Baird and Biedenharn® in
which the Clebsch-Gordan coefficients with (A'u’) =
(10) or (01) and /" = O are taken to be positive, one
obtains

4= g¢p=0,

pr=A+p +a+b+r—u,

Pr=fu=r—u

It must be noted that in our method of resolution

of multiplicity problems, contrary to the method
of conjugation operation of Baird and Biedenharn,?
there is no difficulty in the case where A" # u'.
Nevertheless, some inconvenience arises from the
fact that in Clebsch-Gordan coefficients defined by
this method u, being conserved under transposition
of the first and third columns, is not conserved when
the second column is subjected to the transposition.
However, this fact causes no harm because such a
transposition can be avoided in practical applications.

(36)
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A general theory of the realizations of Lie groups by means of canonical transformations in classical
mechanics, proposed in a preceding paper, is applied to the rotation group. A number of significant
physical examples corresponding to nonirreducible realizations is treated in detail: specifically, the mass
point, the rotator, and the rigid body with a fixed point. The explicit form of the possible jrreducible
realizations is worked out. Such realizations do not directly correspond to any realistic physical model
but play a relevant role for the introduction of the spin in classical mechanics.

I. INTRODUCTION

N a preceding paper' a general theory has been
proposed to characterize all the possible realiza-

tions of the finite Lie groups by means of canonical
transformations in a classical phase space. In the
present paper we want to apply the general theory
given there to the rotation group, discussing some
fundamental physical examples.?*

Let us summarize the most relevant results of the
first paper.

First of all, assuming we have a physical system
characterized by the canonical coordinates ¢, - -,
Gu> P15 " " s Pa» We defined as a canonical realization
R(a) of a Lie group § a set of transformations

qu=qg(qla”'s(1n’p1"'"pnla19“"ar)9
p;'=p}(‘]la"'sqnspla'"’pnlalyu"ar)’ (1)
: (i,j=1,“',n)

[where a = (a,,---,a,) are the parameters of §]
homomorphic to § and leaving the Poisson brackets
among the fundamental dynamical variables invariant.
Besides, we considered the Lie algebra of §

[X,, Xl =X, (po=1,-.71, (2

and we showed that the functions y,(g,p) which
generate the infinitesimal transformations of the

! M. Pauri and G. M. Prosperi, J. Math. Phys. 7, 366 (1966).

? An independent formalism for constructing infinitesimal canon-
ical realizations in the specific case of orthogonal and unitary
algebras has recently been developed by S. Titeica, D. H. Con-
stantinescu, and V. Florescu. We thank these authors for having
sent us preprints.

® 8. Titeica, Representation of the Infinitesimal Unitary Groups by
Infinitesimal Canonical Transformations, 1.F.A.-FT-59 (1965); S.
Titeica, D. H. Constantinescu, and V. Florescu, Representation
of the Infinitesimal Orthogonal Groups by Infinitesimal Canonical
Transformations, 1.F.A.-FT-61 (Bucharest, Romania, 1966).

realization R satisfy the following Poisson bracket
relations:

(Vo ¥s} = by, + d,, (3)

where the d,,’s are constants depending on the partic-
ular realization and satisfying the conditions

dpa -+ dop = 0, c:)o' dr,'« + cip dm + c;l drp = 0, (4)

The number of independent d,,’s can be reduced to a
minimum, say s, which is characteristic of the group
§, by means of a substitution of theformy, — y, + v,
(y, constants).

Then, we proved (see Ref., 1, Theorem 1) that,
considering first the generators y,(g, p) as independent
variables, it is possible to construct r independent
functions of the y,’s: Q;(y), -+, Qu(», By, -,
B0 S0, -+, Julp) satisfying

{Dia Qf} = {sBia %J} = {Dn 3:} = {SBM 313}
= {Sts Sl'} = 0’

{Qz” EB;} = éi:‘; (S)

i¢j=15”',h;
tt'=1,"",k, 2h+k=r,

which can be ordered therefore within the following
scheme, hereafter referred to as the Scheme A:

P Bl 3Oy (6)
Q) - Quly)

Here the Poisson bracket between any two expressions
is minus one if they are on the same column and zero
otherwise. The expressions J(y) which actually are the
only independent functions of the generators which
have zero Poisson brackets with all of them, have
been called the canonical invariants. Their number k is
given by the formula

k = r — generic rank |lc},y, + d,,|. )
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Now, if we replace the variables y, by their actual
expressions in terms of a system of canonical variables
(g, p) of a given canonical realization &, the expressions
J(y1, 5 y,) will not result in general independent
functions of the canonical variables. This means that
a certain number, say k — /, of relations of the form

fa(Sl’... (7.=1,"',k—1, (8)

may possibly exist. Let us call I, --,3, (/ < k)
the independent I3 (or functions of them) and let us
denote by J, ., -, 3, those functions of the 3
which turn out to be identically equal to constants.
Then, we proved a second fundamental theorem
(see Ref. 1, Theorem 2) which can be stated as foliows:
given any canonical realization & in terms of the vari-

» J,) = const,
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ables (g, p), it is possible to perform a suitable fixed
(with respect to the group parameters) canonical
transformation in the phase space of the system,
defining new canonical variables

Qi=Qi(q’p)’ PJ=P,(q,P), iaj=1""’", (9)
such that:

(1) Q4,'-+,04, Py, -+, P, coincide ordinately
with Qg, <+, Qy, Py, -, Bus

(2) a set of variables P,.,, "', P, coincide ordi-
nately with 3, - - -, 3, while, obviously, J,,,,- -,
3, have zero Poisson brackets with all the variables
0;, P;.

This result can be summarized in the following
scheme which is referred to as Scheme B:

I 1I 111 v
Pp=%,--P=% Pon=3 Py =3, Pryr o Py
S (10)
=80, = Ona o Qpy Qnirir " Qn

where, again, the Poisson bracket is minus one when
between any two expressions shown in the same
column and zero otherwise. The form that the real-
ization & assumes in terms of the variables just intro-
duced has been called the typical form.

From the structure of Scheme B it is apparent that:

(1) the invariants appearing in the third set are
numerical constants, as we already know;

(2) the generators y, =y, (Q,P) are actually
functions only of the variables of the first set and of
Poirs s Pryss

(3) the variables of the fourth set are left unchanged
along with the invariants Py, -, Py, under the
group transformations;

(4) the variables Q,,,, -, Oy, under an infini-
tesimal transformation [see Ref. 1, Eqs. (4)], change
according to the simple law

a L, ’P ’P
Q)’H_u — Qh+u _ 6ar yr(Ql Qh 1 h+l) :
aPthu

u=1---1, (11
while the most significant transformation properties
are those of the variables of the first set.

The classification of the possible canonical reali-
zations of § is obtained in terms of:

(1) the values of the constants d,,’s (after reduction
to their minimum number);

(2) the number and the actual expression of the
invariants appearing in the second and in the third

set; and the values assumed by the invariants of the
third set;

(3) the number of the variables of the fourth set,
which will be called henceforth inessential variables.

Finally we recall that the realizations for which the
second and the fourth sets are empty have been
defined as transitive or irreducible. Such realizations
are characterized by the property that no manifold
F(q, p) = const there exists in the phase space, which
is left invariant by the transformations of the group
K. All other realizations have been called intransitive
or nonirreducible.

In the second section of the paper we discuss the
reduction (actually elimination) of the constants d,,
in the case of the rotation group, and the construction
of Scheme A. All the nontrivial realizations are
obviously faithful and no significant subcase arises.
In Sec. 3 we discuss the typical form for a number
of interesting examples, namely the mass point, the
rotator and the rigid body with a fixed point. In Sec. 4
the irreducible canonical realizations of the rotation
group are explicitly constructed. They are connected
with the introduction of the spin in classical me-
chanics. Finally, in Sec. 5, the relations between par-
ticular canonical realizations and the transformation
properties of the elementary spinor are discussed.

The complicated developments are confined in the
appendixes.

The paper intends to be introductory to the dis-
cussion of the canonical realizations of the Galilei

group.
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2. GENERALITIES AND SCHEME A
The Lie algebra of the rotation group 0*(3) is

[ oy, M) = €M (12)

where M, AC, , and A, are the infinitesimal operators
of the rotations around the x, y, z axes, respectively.

Let us denote with M, M, and M, the correspond-
ing generators of the three infinitesimal rotations in
a given canonical realization. According to Egs. (3),

we have
{M;, M;'} = ei:ikMk + d-ij‘ (13

Taking advantage of the fact that the generators
are defined up to an additive constant, we perform the
substitution

(14)

{M;, M;} = ¢,;; M,. (15)

Thus, in the case of the rotation group, all the con-
stants d,; can be eliminated.

Now, let us construct the variables of Scheme A.
First, let us put, for instance, P = M,. Then we
look for a function Q = Q(M,, M,, M,) such that

i, k=x,y,2,

M, — M, + %eirsdrs
and obtain

oQ 09
2, P} = M,, M, M, M}=1,
(R) = S5 (Mo, M)+ (M, M)
that is,
M, 02 _ M, 02 = 1. (16)
oM, oM,
The general solution of Eq. (16) is
Q = arctan (M,/M,) + f(M7 + M),  (17)

where f is an arbitrary function of its argument.
Assuming f'= 0 in Eq. (17), and observing that the
expression

M? = M} + M. + M

has a zero Poisson bracket with all the generators, we
arrive at Scheme A:

P=M,
Q == arctan (M,/M,)

3 = M2 (18)

3. THE TYPICAL FORM FOR SOME
SIGNIFICANT EXAMPLES

At this point the first step of the general program is
completed. We want now to construct, for some
significant examples, the fundamental canonical
transformation (9) which leads to the variables of the
typical form (Scheme B). In the present section we
discuss the cases of the mass point, the rotator, and the
rigid body with fixed point. In treating such examples,
the following philosophy is adopted: We assume the

M. PAURI AND G. M. PROSPERI

physical system to be characterized by a set of con-
figurational coordinates ¢‘ and by the expression of its
kinetic energy T = }a,;(9)¢'¢!. The transformation
properties of the configurational coordinates ¢’/ =
q'i(¢q,a) are assumed to be obviously defined by the
nature of the physical system. Consequently, the
transformations of the generalized velocities ¢§* are

4" = (9q"09")¢’, (19)
while those of the conjugate momenta p; = 97/0¢" =
a;,4' are the contragradient ones

p; = (39°/9q")p;. (20)
(i) Mass point. As configurational coordinates, let
us adopt the Cartesian ones, x, y, z. The conjugate
momenta are p, = m*, p, = myp, p, = mi In this
case, the transformation properties of the ¢,, g,, 9.
and of the p,, p,, p, coincide separately with those of
the transformation group itself. Assuming the passive
point of view, the infinitesimal transformation under
a rotation dw around the z axis can be written as:

4, = q, + dwq,, |[p,= p,+ dwp,,

qz’: =gy — 60)q1,, lp; = Py 6wpxa (21)
9z = 41> P, =P
Then, the corresponding canonical generator M, is
easily found to be
M, = q.p, — q,px-

Parallel expressions are deduced for M, and M, . In
vector notations

22)

(23)

Thus the generators of the rotations coincide with the
angular momentum, a well-known result! (see for
instance Ref. 4, Chap. IV).

In order to construct the variables of the typical
form it is convenient to introduce polar coordinates.
One has

M=gqxp.

q, = rsin f cos ¢,
g, = rsin 8 sin ¢,

q, = rcosf,
. sin cos ¢ cos §
py=sinfcos¢-p, — .?9 @ —-‘Q)—'_Po,
rsin 6
) ) cos sin @ cos @
py=sm49511r1<;7'1m+——-~-—.(pp(,,+—~----——~~*-99 Pos
rsin 8 r
sin §
p,=cos f-p, — Ps- (24)

* H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1959).
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Then it follows

M,= —sing-p, —cos pcot-p,,

M, =cos ¢ p,—singcot-p,, (25
Mz =P(p’
and
M? = pi + (1/sin® 6)p2 . (26)

Now, let us consider Scheme B. Since there are
clearly variables such as ¢, 0, p, having nonzero
Poisson bracket with M2, we must necessarily have
in Scheme B two variables Q,, P, in the first set, two
variables Q,, P, in the second one and two variables
Qs, P; in the fourth one, while the third set is empty.
Furthermore, since the variables r and p, have zero
Poisson bracket with the three generators, we can
directly put Q3 = r, Py = p,. The variables 0, = Q,
P, = P and P, = J can be obtained in terms of ¢, 6,
Po» Po by inserting Egs. (25) into Egs. (18). We are,
then, left with the construction of the variable Q,.
To this aim we have to search first for a function

g(g, 0, p,, po) such that
{ng} = 0;
{Pl, g} = 0.

The second equation gives at once dg/d¢ = 0 and the
first explicitly becomes

(27)

og
pﬂp(p

Og _ Og
Py opy

(ps sin® 6 + pj cos® 6) p

. og
o 06— =0 (28
+ p, sin 0 cos Py (28)

Two possible independent solutions of Eq. (28) are

g = M? = pj + (1/sin® 6)p}, and

gs = Dptan 0.

(29)

Every other solution has to be a function of these. Then
Q. must be also a function of g, and g,. By imposing
the condition {Q,, M3} = 1, it follows that

1 Petan 0
= o M=[M
Q.= z-arctan®— (M =M (30)
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(see Appendix A). The Scheme B for the mass point
realization is completed.

The generators of the infinitesimal transformations,
when expressed in terms of the variables Q, P,
assume the form

M, = (P, — PHt cos 0y,
M, = (P, — PHtsin Q,,
M,=P,.

(1)

Then the transformations of the variables Q,, P,
P, for a given infinitesimal rotation dw are

P
Q{ = Ql + (30):,5(?——1})2—)%005 Ql

2 1

+ do, 1 P sin Q; — dw,,

(P — PY)
P, = P, — dw (P, — P} sin 0,

+ de(Py — Py cos Q,, (32)

Q:=0,—9 0s Oy

1
O Py — P
(P, 1

w, —— sin Q,,
p -yl

while, as we repeat once more, the variables P,, Q;,
and P, remain unchanged.

The finite transformations can be obtained by
expressing Q;, P, and Q, in terms of Cartesian
coordinates and conjugate momenta. Alternately, the
same result can be obtained by integrating directly the
system (32). In this connection, we observe that
the expressions 0Py = P, — P, 00, = 0, ~ 0,,0Q, =
0, — O, are functions only of the variables Q, and
P, (and of P, as a parameter), not of Q,. Then, we
stress the point that, once the system formed by the
two first equations, which is a closed one, is solved, the
problem of the construction of the finite expression
for @, is reduced to a simple quadrature (see Sec. 4 and
Appendix B). This is true in general; see Ref. 1, Sec.
3. Using as parameters for the rotations the Euler
angles «, f/, ¥ (we adopt throughout the conventions
used in Ref. 4), the result is

sinf - P,

Q) = arctan l:cosﬂ “tan (Qy + ) +

P/ =cos B+ P, —sin B -sin (Qy + 2) - (P, — P3)?,

wu&+@-wr4%4_”

(33)
}

, 1
Q. =Q,— Z——P%arctan [

2

tan f-sin Q, - cos Q, (P, — P}) — cos Q- Py(P, — Plg)_:l
tan B - PyP, + sin Q; * Py(P, — P}
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FiG. 1. The geometrical meaning of the variable Q, for the mass
point realization: y = 2MQ, = arctan (p6 tan 6/ M).

We return later to the problem of the integration of
the first two equations (see Sec. 4).

In order to understand the geometrical meaning of
the variable Q,, let us consider a unit vector 7 and
a quantity © so that {®,M -4} = 1. Thus, for a
rotation o around the direction of 7 it follows @’ =
© + o. In this sense ® can be interpreted as an angu-
lar coordinate in a plane orthogonal to /i. Now, from
{Q,, M?} =1 we have also {2MQ,, M} = 1; then,
being M =M -M/M, 2MQ, has to stand for an
angular coordinate in the plane orthogonal to M. In
fact, let us call X the mass point, O being the origin
of the coordinate system and = being the plane
through O which is orthogonal to M. Obviously
X belongs to m. One can easily see that 2MQ, coin-
cides with the angle y between OX and the intersection
h of 7 with the half-plane from M which contains the
positive z axis (see Fig. 1). To this aim, it is sufficient
to observe that the unit vector iz along Oh is of the form
i = ak + bM, where k is the unit vector along the
positive z axis. Then, since M+ # = 0 and normal-
izing, it follows that

i = (M*% — MM)MM® — M)}
and consequently

M cos 0
(M?* — M)
whence, using Eqs. (25) and (26), the relation
y = 2MQ, is readily obtained.

(ii) Rotator. The configurational variables of the
system may be specified by the two polar angles ¢, 6.
Then the kinetic energy has the form

T = }(0* + sin® 6¢?)
and the conjugate momenta result

oT . oT ,
= — = [sin® B¢, == =10,
Py 3¢ P, Do Y

—
cosy = a-(r/ry = (r = 0X),
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/

F1G. 2. The geometrical meaning of the variable Q, for the
realization corresponding to the rotator: Assuming a = 1 it follows
that d = sin 6y, ¢ = cos 0y, b = cos Oyjcos x, ¢ = cos Oy tan g, f=
(sin? 0, + tan?® y cos?0,)}. Applying the Carnot theorem to the
triangle OAB: f2= a2 4 b*> — 2ab cos 0, it results that cos y =
cos f/cos Op. Then, since cos §, = (M2 — Mﬁ)'}/M, it follows that
[cf. Eq. (26)]

1
(M?5sin® 0 — p2)*

vy = 2MQ@, = arctan
% 2 M cos B

= arctan (p, tan 6/ M).

being 7 the moment of inertia of the system. Such a
model can be considered to be deduced from the mass
point by imposing the constraint r = const within the
configuration space. The transformation properties of
@, 0, p,,and p, are then the same as for the homon-
ymous variables of the previous case, so that the
generators of the three rotations are given again by
Eqs. (25) and (26). The expressions of Q,, P, P;, and
Q, for the rotator are consequently the same as for the
mass point, the only difference between the two cases
being the missing of the variables Q3, P, in Scheme B
for the former one. The geometrical meaning of the
quantity 2MQ, in this case is simply that of providing
the angle formed by the rotator with the half-plane
from the angular momentum M through the positive
z axis (see Fig. 2 and the geometrical derivation
indicated there).

(iii) Rigid body with a fixed point. The configuration
of the system can be now characterized by the three
Euler angles ¢, 6, y. The kinetic energy assumes the
form

T = $L2% + L% + 1L,0E,
where the Qs (I = X, y, 2) are the angular velocity
components referred to the body system

Q, = cos w0 + sin 0 sin pg,
Q, = —sin g6 + sin 6 cos p¢, (34
Q, = ¢ + cos 6¢.
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The conjugate momenta are

P, =sinfsinypcosy- (I, — 1,)0 + (I, sin® f sin?
4 Lsin?0cos®y + I;cos* B)g + I;cos 0+ 9,
pe = (I, cos® y + I, sin? )0

+ sin Osiny cos ¢« ([, — )¢,
P, =Ly + Iycos 0+ ¢. (35)

The transformation properties of ¢, 6, y in terms of
the Euler angles «, §, y corresponding to a certain
rotation, are expressed by (see Appendix C)

sin (p — o) _
cos ffcos (¢ — «) — sin B cot 6
" = arcos [cos B cos 0 + sin fsin 8 cos (¢ — «)],

@’ = arctan Vs

sin {p — o)
cos B cos (¢ — o) — cot Bsin §
(36)

From these formulas, the finite transformation
properties for the momenta could in principle be
deduced according to Egs. (19} and (20). We do not
give them explicitly. Let us consider instead the in-
finitesimal transformations. In terms of the rotation
angle 0w,® the transformations of the configurational
variables are

¥ = y -+ arctan

¢ = ¢ + dw,sin ¢ cot 6 — do, cos @ cot 6 — dw,,
0= 6 — dw, cos ¢ — dw, sin ¢,

sin i cos (7
w’=w~(§(ux_¢+5mg. (p.

sin 0 sin 0

Consequently the momenta transform according to

L

D™

p¢~éwx(coscpcot 6-p, + sin (p.pG_COS (Pl’w)

sin §
— 6(oy(sin @cot 6+ p, —cos @ py — 51'n 4 pw)’
sin
, . [sing sin @ cos 0 3%
= py + 56%( - )
Po=Po sin® GP‘P sin® 6 Py

cos @ cos 0

—_ éwy(cos ¢

B " Dyl
sin® 6 Pe sin® 9 w)
Py = Dy-

From Eqs. (38) it can be verified that the generators of
the infinitesimal transformations are the angular
momentum components in the space system. As a

% As it is well known, the Euler angles are not convenient to
parametrize the transformations in the neighborhood of the identity
since the identity itself is a singular point for such a parametrization
and the Euler angles cease to be essential parameters there.
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matter of fact, they are

M, = cos ¢ * p, -+ (sin ¢/sin 0)pv, —singcotf-p,,
M, = sin ¢ - p, — (cos g/sin G)p, + cos pcotb-p,,

M,=p,, 39

so that

M® = pj + (sin® 6)7'(p; + py)
— 2(cos Bfsin® B)p,p,. (40)

The same result, however, could be simply deduced
by observing that the rigid body with a fixed point
could be considered to be derived from a system of »
mass points by introducing suitable constraints and
that for this last system it can be immediately verified
[cf. Case (i)] that the generators are just given by the
components of the total angular momentum referred
to the space system

M =i§1‘h xp;.

It is of interest for us to consider also the expres-
sions of the angular momentum components referred
to the body system, They are

VI, = cos p - py + (sin p/fsin O)p, — siny cot 6 - p,,
VI, = siny - py — (cos y/sin O)p, + cospcotf-p,,
(41)

5 pw .

Let us point out that Eqgs. (41) are formally identical to
Egs. (39) except for the substitutions g 2y, p, < p,, .
It can be shown furthermore that the M;s (I =
X, 7, ) have zero Poisson brackets with the M,’s and
that they satisfy the same Poisson bracket relations
[cf. Egs. (15)]. It can also be easily verified that
the M;s can be thought of as the generators of the
infinitesimal transformations of the second parameter
group of the rotation group as the M ;s are of the first
one.

Turning our attention to Scheme B, we note that,
as in Case (i), there must be two inessential
variables Q,, P;. They can be constructed by referring
to Scheme A [Eqs. (18)] and replacing there the M.’s
for the M,’s. Thus we put

B

Py = M;, Q, = arctan (M,/M,).

It remains to specify the variable Q, conjugated to
P, = 3 = M2 This variable @, cannot depend on ¢
and yp since it has to have a zero Poisson bracket with
P, =p, and P, = p_. The condition for a function
g0,p,,ps, p,) to have zero Poisson brackets also
with @, and Qj is expressed by the following system



2262

of differential equations:
10
2+( Py —cotB-p)}—g
[Po sin 0 ¢ op,
1 p og
oo
sin 6 Y sin 6 ops
- [ﬂ'—-—cot 0-p4§§=0,
sin 0

. (42)
Jg
>+ (ﬂ-—cotﬁ-p)J—
I:Po sin 0 ‘] lop,

1 p og
+ cot 6+ p, — —~ )p }——
l:sin 0( * sind ! op,

Do dg
— | =% — cot §- = =0.
[sin 0 p"’]ae

Two independent solutions of such a system are

& = M* = pd + (sin® ) (p% + p2)
— 2(cos 0/sin® 6)p,p, (43)

and

M?cos 0 — p,p,

[(M? — p2(M? — p2)It

Then, as for Case (i), the variable @, is easily obtained
in the form

&= (44)

Q, = 1 arctan Py tan
2M M — (p,p,/M cos 0)

(45)

(see Appendix D). The geometrical meaning of the
expression 2MQ, is that of providing the rotation
angle of the body around the direction of the angular
momentum M, precisely the angle defined by the
half-planes from M through the intrinsic and through
the fixed z axes (see Fig. 3; a geometrical derivation is
also sketched there).

The results concerning Scheme B for the three
examples dealt with, are summarized in Table I.

4. THE IRREDUCIBLE REALIZATIONS

In all the examples dealt with above, the invariart
J = M? appears itself as a canonical variable and
thus it does not have a definite value. Moreover, in the
Cases (i) and (iii) there occur two inessential variables.
According to the definitions given in Ref. 1, all the
corresponding realizations are clearly nonirreducible
(intransitive). The phase-space manifolds defined by

equations of the form
F(Py, @3, P;) = const or F(P,)= const

are in fact invariant manifolds. Actually, one can
easily be convinced that none of the most intuitive
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FiG. 3. The geometrical meaning of the variable Q, for the rigid
body realization: The geometrical derivation can be obtained in the
simplest way by using a procedure based on spinor calculus. By
expressing a *‘transformed” spinor

iy cos 30 exp [—4i(p + ¥))
("2) - (—isin 46 exp [3ilp — w)])
in terms of an initial spinor
us cos 30, exp [—}i(po + o)l
(ug) - (—i sin 40, exp [4ilp, — wun)
by means of a rotation R = cos }x + io * (M/M)sin }y, we arrive

at _
M2cos 6 — M,M;

L= = o — i

that is,
potant

¥ = 2MQ, = arctan =7 7 Teosb) (/’q:p.,/M wosh)”
physical systems provides an example of irreducible
realizations for the rotation group. On the other hand,
the irreducible realizations with a definite fixed value
of J are nevertheless very interesting since, as we shall
see in forthcoming papers, they play a relevant role
in the construction of the canonical realizations of the
Galilei and Poincaré groups corresponding to a free
particle with spin.

Such irreducible realizations have to be constructed
following an axiomatic procedure.

We introduce two canonical variables ¢ and p
(having a priori no simple physical meaning) and we
put [cf. Egs. (31)]

M, = (7 — pz)% cosgq,
M, = (12— p)tsing,
M, = P

(46)

where /% is a positive constant. Equations (15) are
clearly satisfied by these expressions. Also, it holds
I=M=1
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TasBLE I. The variables of the typical form (Scheme B) for the realizations discussed in the
present paper.

(1) Mass point

_ _ COS @ * pg — sin g cot 0+ p,
I Pr=p, Q, = arctan —sin @+ pg — cos pcot 6 p,
1, 1 petan b
1 Py =pg + 55 P0 Q0. = 7P} arctan 2
v = p, Qs=r
(2) Rotator
B _ €os @ pg — sin g cot 6+ p,
I Py =pg Q. = arctan —sin @ - py — cos @ cot 6+ p,,
1 petan 0
W] P=ptgagpe | Q= gpaeenTy
(3) Rigid body with fixed point®
. cos @
Sin ¢ * pg — =g Py + COS @ cot O p,
1 P, =p, Q, = arctan sin @
cOS 9 po + g Py — sin ¢ cot 8 - p,,
1 2cotf 1 petan b
— n2 —_— 2 2y - —_— R A ——
I Po=ph+ 555 (p% + pi) sng PoPv 0= 2P} arctan T
e P%
. osy
SNy po — g Py + cos ycot 8- p,,
v Py=p, Qs = arctan sin p
COS Y * pg + o—p Py — Sin p cot 6-p,

2 Note that the variables of the typical form in this
particular class of realizations (the “*symmetrical’” ones)

Now, the transformations corresponding to an
infinitesimal rotation are given by [cf. Egs. (32)]

14

d0q = dw, cos ¢
T et
P . 47)
+ dw, s 2)% sin g — do,,
dp = —dw, (I — p)¥sing + S (IF — ¥ cos g.

The finite transformations can be constructed explicitly
by integrating just the above differential relations.
With this in view, we first integrate Eqs. (47) relative
to rotations around the z and the x axes, respectively.
Then we take advantage of the known property that a
general rotation R(x, B, ) characterized by the Euler
angles «, f3, v can be expressed as a product of three
rotations R,(y)* R, (f)- R,(«) of angles «, S,

case can also be viewed as deﬁmng the S(Imm Bfora
of the group O3) X O(3) = O(4).

around the z, the x, and again the z axes. The con-
sistency of the whole procedure is guaranteed by the
fact that the system is integrable owing to the Lie
theorems.
For a finite rotation o, around the z axis we have
at once
g =9,
p=p
For a rotation around the x axis, the system (47) can
be written

dgldew, = [p[(I* — p*)¥] cos g,
dpldw, = —(I* — p*)tsing.
By eliminating the variable w,, we get
dpldg = [(p* — [®)/p]l tang.
Then, integrating, it follows that
cosqg = Cy/(I2 — pt

(48)

(49)

(50)
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and, by inserting this expression into Eqs. (49), we

obtain the general solution with a simple quadrature
¢=ammﬂm—CﬁMJmu%+cm,“D
P == = C)Fsin (o, + C),

where C; and C, are integration constants. Finally,
expressing C; and C, in terms of the initial values ¢
and p, we have

g’ = arctan {cos w, tang
+ sin w,[p/cos g(12 — pHT},  (52)
P’ = COS 1,p — sin W, sin q(12 — Pz)%-

In conclusion, the general finite transformations we
were looking for are deduced from Eqgs. (48) and (52):

q' = arctan |:cos ftan(q + «)

sin f3 -

e
cos(q + o) (IF—p)*

p =cosB-p—sinfsin(qg + «) - (1> — pQ)%.

As a function in the group space, ¢ is defined
mod (27). This is in agreement with the fact that,
according to Egs. (46), ¢ is an angular coordinate,
actually the angular specification of the projection of
M in the plane (xy).

5. CONNECTIONS WITH SPINOR THEORY

In the preceding section, we constructed a faithful
realization of the rotation group involving only two
variables. Another (faithful) realization in two
variables, but obviously noncanonical, can be obtained
if we consider first the well-known transformation
properties of the elementary spinor

()

and then if we form the ratio { = #/£ between the
two components (that is, if we consider # and £ as
homogeneous coordinates in a one-dimensional
complex space). We presently see how the two reali-
zations are directly related. Actually, the infinitesimal
transformation properties of the elementary spinor
can be written

7 =1+ }i[(dw, — ibw,)§ + dw,7],
¢ =&+ 4[(bw, + idw,)n — dw,&],
from which it follows that
§={+ §idwy(l — L3 + $ow,(1 + ¥ + idw,L.
(55)

(54)
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Now, we try to connect in a complete general way the

()
E

with the vector M without any reference, for the
moment, to a particular realization. To this aim, we
identify M with the real vector which can be associated
to any elementary spinor.®~8 We have

M, = &n* + &,
M, = —i(én* — E*n),

il

M, = nun* — E&%, (56)
M = nn* + £&*.
Then, from Eq. (18), we deduce
Q=argf —argn, 57
P = nn* — &, S
and solving for # and & we can write
= [M(M + bbigia
n = [x( 33)]; (58)

§= (M — Wypfertiers,

where o is an arbitrary function of all the variables on
which the realization operates. Finally, we get

(=M + BIM — PPt et (59)
Now, from Eq. (59) it follows that

M, =31+, {M, =i

so that, as it could be expected, the transformation
properties of { as they are deduced from Eq. (59)
agree with Eq. (55). If we consider again the irreducible
realization, we find the connection we were looking
for by simply setting, according to Eq. (59),

{= [+ plU—ple™ (61)

or inversely,

g = —arg{,
p = {[(L* — D/(L? + D]

It can be easily proved that no function « of only Q,
B (and JI) in Eqgs. (58) can reproduce Eqgs. (54), so that
it is not possible in any way to connect the irreducible
realizations with the transformation properties of the
spinor components themselves. This is quite obvious

(62)

® See, for instance, Refs. (7) and (8). Our association is slightly
different from those given there.

? H. Weyl, The Theory of Groups and Quantum Mechanics (Dover
Publications, Inc., New York, 1931), pp. 144-45.

8 W. T. Payne, Am. J. Phys. 20, 253 (1952).
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if one notices that of the four quantities which charac-
terize the spinor, one is left unchanged by the rota-
tions while the other three actually transform. This
remark suggests also that the only realization of the
rotation group which could be connected with the
transformation properties of the elementary spinor
is the realization which, in its typical form, contains a
variable conjugate to the invariant 3, that is, essen-
tially, the canonical realization corresponding to the
rotator. As a matter of fact, such a connection can be
expressed by putting
n = (P} + PI! exp (—1iQ; — iPiQy),
= [P3 — P exp (+1i0 — iP1Q).
This connection is directly related to the geometrical
interpretation of the spinor if the angles 2P3Q, (cf.
Sec. 3ii), Q, and arcos P,/P} are identified with the
angles —y, — g, and 0 of Ref. 8, respectively.

Let us emphasize, finally, that the factor } appearing
in front of the angles Q, and 2P2%Q2 in Eqgs. (63) corre-
sponds to the fact that the transformation properties
of the spinor, unlike the canonical realization, provide
a realization of the universal covering group rather
than of the rotation group itself.

(63)

APPENDIX A. INTEGRATION OF EQ. (28)
AND DETERMINATION OF THE VARIABLE
0, FOR THE MASS POINT

The equation to be integrated is
dg

(pgsm 9+p¢cos 0)_"'17:/: 08
9

op,

+ p, sin 0 cos 6% =0. (Al
00
It is easy to verify the obvious result that a solution of
Eq. (Al) is
g1 = M® = p; + (1/sin* 6)p;.
Thus, we are interested in a particular solution inde-
pendent of g,. We search for a solution of the form

8(0, pg) = U(6) - V(po). (A2)
1t follows that

—De i—‘1K+sm 0 cos 9_ﬁ_l{=

0,
V dp, U d6

Qr=Q:—

tan f sin Q, cos Q, - (P, — PI) — cos Q, - Py(P; — P}
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that is,
e & 1dv — K
V dp,
sin 0 cos G—i—q = k. (A3)
U do
Solving these equations, we find
V = Cpk (Ad)
and
2 df k 1 4 cos 20
logU =k = —-log———— +logC
8 fsm20 2 1—cos2¢9+Og ?
= log tan® 6 4 log C,,
that is,
U= C,tan*§ (A5)

(C, and C, integration constants). Finally, by choosing
C, = C, =k =1, we obtain

gs = pptanf. (A6)

Any other solution of Eq. (A1) must be a function of
g1 and g,. Then, let us consider a function ¥(g,, g,)
and impose {V¥', M2} = {g,, M?%(0¥/dg,) = 1. Since
{gs, M? = 2g2 + 2g%, we conclude

=f_dgz_ _ b rctan Petan 6
M

2 S = T + const.
2¢; +2g1 2M

(AT)

APPENDIX B. THE FINITE TRANSFOR-
MATIONS OF THE VARIABLE Q,

Owing to what was said in Sec. 4, it is enough to
consider rotations around the x axis. Thus, we have

Q) = Qy — dw,lcos Q,/2(Py — Pl (B1)

From the solutions of the first two Eqgs. (32) [cf. Sec.
4, Egs. (47)-(51); cf. also Eqs. (33)], we obtain

-G 1 (B2)

40, _
2 Py — (P, — CHsin® (w, + Cy)

dow,

(C, and C, integration constants). Finally, with a
quadrature, it follows that

C
lé arctan [Pi tan (w, + C2)i|
2

1
= Q, — 2—-72 arctan l:

Py

tan § - PP, + sin Q, -

B3
PP, — P} } (B
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APPENDIX C. THE TRANSFORMATIONS
OF THE FIRST PARAMETER GROUP

The body configuration can be expressed in terms of
the matrix S, , connecting the coordinates in the
space system to the coordinates in the intrinsic system.
The transformation properties of the Euler angles ¢,
6, v under a rotation S, ; . can be implicitly written as

S 0w = Sapy® Sotte- (€1

@

In the spinor representation, the above relation

becomes
( e—%i((p”rlp')c()s %0'
—iette—vIgin 107

. 1. .

(e%““”’ cos 3f  ie7* P sin %ﬁ)
ie%i(a—v) sin %ﬁ e—%i(a+y) cos _%/3
et o5 16 —jetile—w) gin 10

X
—ie

ietio-¥) sin 36

—ie b= gip %0’)

eFi ) oo 16’

. (C2
o) cog 10 ) )

More simply, we can characterize the configuration of
the body by using directly the spinor
(ul) ( e~ o5 16 )
Uy B

— it gin 19

formed by the first column of the matrix S.7 ..
Actually
( e—%i((p'-%-w') cos %6’ )
—ieti " sin 10’
(e%i(a-{»v) cos %5 ie—%i(a-v) sin %ﬁ)
= 1. . 1,
iefz(a—y) sin %/3 e—zz(1+)’) cos %/3
—Silpry)
e 2" cos 16
X - Bile—y) > (C3)
—ie**™" sin 16

(cf. Ref. 8. The conventions adopted in this paper are
different from ours.) Then, solving Eqs. (C3) with
respect to ¢', 0', v’, the relations (36) are deduced.

Alternatively, in terms of the rotation angle o
about the axis 7, we may write

Lotori
e—2z(tp +y’) cos %6’ .
Litov’) - = [cos 3o + iG -+ nsin o)
—ie® ¥ sin 36

1. .
e ) cos 10

X Lito—u)
—ie* ™% sin 36

), (C4)

from which, for instance, the infinitesimal trans-
formations (37) can be obtained.

M. PAURI AND G. M. PROSPERI

APPENDIX D. INTEGRATION OF THE
SYSTEM (42) AND DETERMINATION OF
THE VARIABLE @, FOR THE
RIGID BODY

The system to be integrated is

2
2 Py 0g
+ —cot 0 p,) | 2%
[pg (sin 5 ° p“’) }ap(p

+ [ Lo (cot 0-p, — Lo )]@
sin 6 sin 6/ J0p,

Dy og
- —cot 6+ p,|-2 =0,
|:sin ] « p"’}aa
2
2 Pe og
+ —cot 0 p,) [2£
|:p,, (sin 0 «© pw) j|8pw
+ [ 'pg (cot 6 p, — ‘p.,, ):'a—g
sin 6 sin 8/ 1dp,
Py og
- —~cot 6-p, |22 =0. (DI
[sin 6 co p‘”]ae (D1)

A solution is obviously provided by &, = M? [cf. Eq.
(43)]. We have to look for a second solution g, inde-
pendent of g,. Using as independent variables M2,
Po> P, and & = g, = p,tan 6§, it follows that

og ép, g
g = - —"0""——=0,
(@81 =3 » (M?— p2)cos 03k D2
0g &p g b2
= — ._.———__(p
{0s. 83 = op, (M*— pw) cos 0 65 ’

where cos 8 still has to be re-expressed in terms of
M2, p,, p,, & Multiplying by p, and p,,, respectively,
and subtracting, we get
E — pu(M* — P@)Q
ap, p,M’—=p2)ap,
To solve Eq. (D3) we use the method of the character-
istics (see for instance Ref. 9). We can write

(D3)

dpw/dpqz = '—pw(M2 - pu/)/p(p(l\/l2 - p(p) (D4)
from which
2
Pw Do
log ——— = —log + log Q. (DS5)
M? — pw M? — p‘f
The integratlon constant
= [pJ(M® — p)1- [pj[(M? — p2)]  (D6)

9 E. Goursat, A Course in Mathematical Analysis (Dover Publi-
cations, Inc., New York, 1959), Vol. II, Part Two, Differential
Egquations, Chap. 11, Sec. 3. For a more detailed discussion, see for
instance, R. Courant and D. Hilbert, Methods of Mathematical
Physics (Interscience Publishers, Inc., New York, 1962), Vol. II,
“Partial Differential Equations,” Chap. I, Sec. 5.
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is a solution of Eq. (D3). The same is true for a func-

tion of €2, M2, £. Now, using such a kind of function,

for instance in the first of the Eqs. (D2), we obtain
0

Q g

o0

and observing that, owing to Eq. (40), cos@ is
expressed in terms of the independent variables in the

(D7)

form
PoP £\ /1 3
her B B G I I
(D3)
we get
008 _ &+ M)
Q 2M?

1 og
X 2/ 2 g2 %_=0
T {1414 (E/MIHA/Q) — 11} 05

Finally, performing the following change of inde-
pendent variables

(D9)

1) —1=1,
H{l+ [1+ &MU/ — 1=z +1,
(D10)
we arrive at the form
21(t + 1)(9g/01) + z(z + t + 2)(dg/dz) = 0. (DI1)
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Then, if we apply again the method used above, we
obtain the equation

dz 1,

_ o, 1+2
dt 21t + 1)

z’
2A(t+ 1)

which is of a Bernoulli type. Standard methods give
now the solution

z=1/[l + C(t + D},

(D12)

(D13)

where C is the constant of integration. Again, the
expression

C = [1/(t + DH@/z) — 1]

is a solution of Eq. (D11) and, consequently, of the
system (D2). Thus, going back to the original variables
we obtain the solution

(D14)

M?cos 6 — p,p,
[(M* —

— . (DI15)
PIM?® — pHIF

Finally, since {g,, M?} = —2M(1 — g%)} we have

g2(M2a 6’ p(p9 pw) =

{@M)arcos g,, M3 =1 (D16)
and we can conclude
Q, = Larcos Go = L arctan P tan 0 )
2 2M M — (p,p,/M cos 0)
(D17)
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In this paper and in the following, we study, in potential scattering, the existence and meaning of the
solutions of the N/D equations in the equivalent formulation f/f. For § waves, considering only regular
discontinuity ¢A(x), such that the resulting integral equation is of the Fredholm type, we study the
corresponding Fredholm determinant 9(z). We remark that Marchenko formalism gives exactly the same
resulting equation and then we have the possibility to interpret in terms of local potentials. We show
the connection between the nth trace of the kernel of the resulting integral equation and the nth term
of the potential reconstructed from the discontinuity. The connection between dispersion relation and
the corresponding potential reconstructed from the discontinuity is given by the relation

1 o« [es]
D(u) = exp — if f V(t, w) dt dr.
0 r

In the present paper we limit our study to |x| less than the smallest modulus root of D(n) where a
perturbation expansion of the solution exists and we show that V(r, ) is regular at r = 0. On the
other hand, for Yukawa-type potentials where the inverse Laplace transform is AC(x) the Fredholm

determinant is exp (—J‘,‘:’ AC(2)/2* dx) and cannot vanish such that the corresponding solutions of the

NOVEMBER 1967

resulting integral equation exist always.

I. INTRODUCTION

N dispersion theoretic calculation, during the

recent years, the N/D equations® have been ex-
tensively used as dynamical equations for strong-
interaction physics. In order to understand more
carefully the meaning of the approach, many works
have been made in potential scattering,®® mainly by
using the discontinuity given by the Born amplitude.
In this paper we are interested for “regular interac-
tions” in the alternative approach f/f, where f is the
Jost function.*> Although this can seem at first sight
strange, it appears that physicists in general have not
been interested, even in the simplified version given by
potential scattering, in the problem of the existence
and uniqueness of these solutions. In fact the resulting
integral equation of these f|f (or N/D) equations has
a kernel proportional to the whole discontinuity A(x)
of the S matrix. Our aim is the following: we consider,
as usual, the discontinuity A as input in the resulting
integral equation; from the corresponding solutions,

* Paper presented at the 1966 International conference on High
Energy Physics at Berkeley, Calif,

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

2 R. Blankenbecler, H. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N.Y.) 10, 62 (1960); J. D. Bjorken and A.
Goldberg, Nuovo Cimento 16, 539 (1960); M. Luming, Phys. Rev.
136, B1120 (1964); B. Kantor, Ann. Phys. (N.Y.) 33, 196 (1965);
S. M. Roy and R. Blankenbecler, ibid, 35, 314 (1965).

3 E. M. Nyman, Nuovo Cimento 37, 429 (1965).

4 A. Martin, Nuovo Cimento 19, 1257 (1961); Nuovo Cimento
Suppl. 21, 157 (1961); in Progress in Elementary Particles and Cos-
mic Ray Physics (North-Holland Publishing Company, Amsterdam,
1963).

5V. de Alfaro and T. Regge, Nuovo Cimento 20, 956 (1961).

we can reconstruct the Jost function, the S matrix, the
physical states, and physical quantities. We study the
possibility of such a reconstruction and try to under-
stand the reason of possible breakdown appearing in
this way. For *‘regular interaction” we assume

[‘” A(x)
e

and that the resulting integral equation is of the
Fredholm type and in order to investigate the existence
and uniqueness of the solution we have to seek the
roots of the Fredholm determinant corresponding to
the kernel A(y)/(x + y).

At this stage we emphasize that we can adopt two
entirely different points of view.

First, in order to keep the character of linear
operator for the resulting integral equation, we put
formally the discontinuity equal to uA(x) (u is a
parameter). Then we have still a “regular interaction.”
In this case the corresponding potential V(r, u) is not
linear in 4 and does not depend in a trivial manner on
the parameter u;

V(r, p) = ilu"Vn(r),

where V,(r) is determined by A(x).

Second, we can consider that the discontinuity is
A(x, 2), where A is a complicated function of 4, non-
linear in 2. In this case 4 is the parameter such that

dx < ©

X

AGx, 1) = 3 4A(x),
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where A (x) is the discontinuity coming from the
nth Born approximation. In this case 4 is a linear
parameter for the potential A¥(r) and A, (x) is deter-
mined from V(r). We know from Martin? results that
for Yukawa type of potentials A(x, 4)/x is integrable
when x — c0; then for these interactions our above
conditions for “regular interactions” are satisfied.

In the first case the resulting integral equation is
linear in u, in the second case, the Schrodinger equa-
tion is linear in 4. We emphasize that the families of
interactions we can obtain when 4 or u goes from
— o0 to + oo are different.

When we adopt the first point of view we have to
investigate the roots of the Fredholm determinant
D(u). De Alfaro and Regge® have given a sufficient

condition
o0
Jm/Z

such that D(u) cannot vanish. But this result does not
recover the whole Yukawa-type family of potentials
such that even if it has been proved that the Yukawa-
type family leads to this resulting integral equation,
it has not yet been proved inversely starting from this
resulting integral equation (although this is plausibly
true) the existence and uniqueness of the solutions
corresponding to the whole Yukawa family. From the
mathematical point of view, the resulting integral
equation has a polar nondegenerate kernel and we
know that in general there exists an infinity of singular
values u , ;such that D(u, ;) =0 (g; > 0, u_; < 0).
But D(y) is an entire function of x with coefficients
depending in a nontrivial manner on A(x); then it
does not appear very easy to find the localization as
well as the meaning of these p..; . Because at first sight
the mathematical point of view does not seem to be
of great help, perhaps in order to have some insight,
it will be better to try to understand more carefully
what we seek physically. In fact what we have to
solve is nothing else but the Jost function for families
of potentials nonlinear in the coupling parameter and
we know that for “honest’” regular interactions (like
the Yukawa-type family) there exists for each value of
the coupling constant 1 of the potential, a unique
solution. We can formulate the problem in another
way. It is very usual to invoke some physical require-
ments in order to understand singularities and break-
down in a theory (bound, states, resonances, spins).
From this point of view it seems difficult in the case of
physically acceptable, regular interaction, to attribute

pAx)

X

dx < 2log?2

8 Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of
Scattering Theory (Gordon and Breach Science Publishers, Inc., New
York, 1963).
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some physical meaning to the nonexistence of the
Jost function for some special x4 values. Then we can
perhaps make the conjecture that although the mathe-
matical requirements are such that there exists an
infinity of singular u.; values, the physical conditions
are such that we never attain these values for physically
acceptable regular interactions like those of the
Yukawa-type family. It is the aim of this paper and of
the following to verify that these physical requirements
are satisfied mathematically. In fact from Martin’s
work? and the De Alfaro and Regge condition,® we see
that |u| small enough will include at least a part of the
Yukawa-type family. But we have the feeling that we
can go outside this interval given by the De Alfaro and
Regge condition; perhaps up to the first positive and
the first negative singular values 4, [smallest modulus
>0 or <0 root of D(u)], where we have also the
desire to find Yukawa-type interactions or some
generalization of Yukawa-type interactions.

For u equal or outside these values where physical
insight cannot help us, we feel that we will find inter-
actions violating strongly some conditions of the
Yukawa family or physically nonacceptable states like
ghosts. (We do not consider CDD poles in these
papers.)

The answer to all these conjectures will be given by
the powerful Marchenko® inversion formalism. Note
that our problem is similar to an inverse scattering
problem. We give as scattering data the discontinuity
which is our input and try to interpret the corre-
sponding interactions in terms of potentials. In order
to avoid ambiguities, first we adopt the point of view
that the physical states or bound states are given by
the interaction; second we do not consider the problem
of Bargman phase-equivalent potentials. We must
add that Marchenko equations have been established
with the restrictions of the existence of the moments
for the potentials but we do not retain these conditions
for the following reason: We remark that Marchenko
formalism gives exactly the same equations as the
resulting integral equation coming from f{f. Then the
problem of the existence and meaning of the solutions
in the two formalisms are the same if we give the same
input uA(x), but we have the advantage in Marchenko
formalism of having a direct interpretation in terms
of potentials and consequently in terms of bound-
state wavefunctions. Our fundamental result from
Marchenko formalism is

=04 . _ (d[dr)D(u, r)
Vi, r)y = -2 ™ K(r,r); K(r,r) DD

where D(y, r) is the Fredholm denominator of the
Jost solution and D(u, 0) = D(w).
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We get
ﬂm0=ew(—§ﬁ‘[vw,gmm>

or
o = e (- [ 25 ),
miz 22X

where C is the inverse Laplace transform of the
potential and B the discontinuity coming from
the first Born approximation.

If we adopt the second point of view where the
discontinuity is A(x, 1) (see above), then our funda-
mental result means that the Fredholm determinant
of the resulting integral equation is

exp (—f:l 92%) doc),

showing for instance that a Fredholm solution exists
always for Yukawa-type potentials.

We find that the general expression of the potential
reconstructed from the discontinuity uA(x) is

n

V(/,t, r) = 2§&

n=1 N

) S
dx, | dx,
m/2 m/2

(llj A(xi)e—2m,) (;::1 ” j)z

(31 + x)(xg + X3) =+ (Xpq + X,)(x, + X1) .

We have also shown the connection between the nth
trace A, of the resulting integral equation and the
nth term of the inverse Laplace transform of the
potential, reconstructed from the discontinuity fol-
lowing Martin’s method?: We get

/—4—"=[w§—"(—a)doc.

202

Then for |u| less than the smallest modulus root of
D(u), both the series
z,u"ﬁ and E/A"J‘ Cl(i)doc
n m 20(.2

are convergent and we show that the corresponding
V(u, r) is “regular” at the origin. In the following
paper the study of |u| outside this smallest modulus
root will be made.

IL f/f EQUATIONS AND THE RESULTING
INTEGRAL EQUATION
We want to study the existence and meaning of
the solutions of the so-called N/D equations in
potential scattering for “regular interactions.”” Here
we limit ourselves to S waves. As is well known,
another equivalent approach is the fJf formalism,

n Jm

CORNILLE

where f(k) is the Jost function such that f(—k) = D(k?).
For simplicity we consider the second approach
because in this case we have only to investigate one
resulting integral equation. We recall briefly the
results? of this approach.

We assume that the potential is of the Yukawa type’

V(ry = ( e ¥ C(a) da, (1a)

V(r) is holomorphic for
Rer >0, (1b)
f C—(:—) do < 0. (1c)

m o4

Equation (1a) means that ¥(r) is a Laplace transform,
mainly there exists a half-plane Re r > ¢ where V(r)
is holomorphic; Eq. (1b) means that ¢ < 0 and avoids,
for instance, poles for ¥(r) in Re » > 0; and Eq. (ic)
means mainly that V' is “regular’” near the origin (less
singular than r=", 5 < 2).

We consider the Jost solution

flk,r) = 7"
r—0

of the Schrédinger equation and we define as usual
the Jost function

f(k) =lim f(k,r).

For the family of equations (1), studying the analytical
properties of f(k), shows that f(k) is analytic in the k
complex plane, with a cut beginning at }im along the
positive imaginary k axis. Furthermore, outside the
cut,

/) = 1] = 0

sufficiently rapidly such that the following spectral
representation can be obtained*:

s =1—if" Fg,
miz K — ly

where we have used the property f*(—k*) = f(k) and
where R(y) is real. Using this representation for the
S matrix, S(k) = f(k)/f(—k); then R(y) can be
obtained from the discontinuity of the S matrix along
the cut [3im, io0]. We find R(y) = A(y)f(—iy), where
A is minus the discontinuity of S. (For simplicity,
we have changed the sign of the discontinuity through-
out this paper.) Then we get the following integral
representation for the Jost function

© f(—ix)A(x) dx
mi2 k — ix ’
2inA(x) = —[S(ix + €) — S(ix — ¢€)),

fy=1—i ®)

x> 3m, (3)

" See for instance V. de Alfaro and T. Regge, Potential Scattering
(North-Holland Publishing Company, Amsterdam, 1965), p- 48.
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and the problem is reduced* to solving the resuiting
integral equation

F(x) = 1 +f F)AG) dy
m/2 x + y
F(x) = f(—ix),
which because of Eq. (Ic), A(y)/y is integrable? when
y goes to co and (4) is of the Fredholm type for the
family of equation (1).
In fact the existence of solutions of Eq. (4) has been
proved by De Alfaro and Regge® only for

J‘“’ A(x)
m/2

We note that this sufficient condition (5) does not
recover all of the family of equations (1). For instance
if C(a) is <0, then* A is <0 and Eq. (5) can be
violated, but in this case the Fredholm determinant
of Eq. (4) is always different of zero and we always
have a solution.

So is the way going from potential scattering to
dispersion relations in this formulation f/f. We are
interested in this paper and in the following in the
inverse problem. Our starting point is the integral
equation (4) where we write formally the discontinuity
as uA(x) (u is a parameter, see the Introduction).

Then

C)

dx < 2log?2. (5)

X

* A(y)F
miz X+ y
We assume a “regular interaction” for A(x) real such

that
fm/2

0 ') 2 8
ff(%@)w@<m
m/2Jmi2 \X 4y

Then (6) is of the Fredholm type.

We seek the existence of solutions of (6) with the
conditions (7) and will try to interpret® in terms of
local potentials of the type (la). Then we have the
following dilemma:

On the one hand at least for the family of equations
(1) we know that F(x) = f(—ix), (x > 0) being the
Jost function exists always for “honest interactions”
and can be constructed for instance from Volterra-
type integral equations of the Schrddinger equation
corresponding to Jost solutions. On the other hand
from the mathematical point of view Eqs. (6) and (7)

F(x)=1+p

A(x)

X

dx < ©

and

@)

8 F. G. Tricomi, Integral Equations (Interscience Publishers, New
York, 1957), Chap. II, p. 49.

# We do not consider here the ambiguity coming in this type of
inverse problem from phase equivalent potentials [see K. Chadan,
Nuovo Cimento 24, 298 (1962) and A. Martin, Ref. 4].
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are Fredholm integral equations with polar'® non-
degenerate kernel and we know that there exist in
general singular values g, ; such that the Fredholm
determinant D(u) of (6) vanishes: D(u.;) = 0. For
instance, for the previously considered case C < 0,
A <0, (6) can be reduced to a Hilbert-Schmidt
symmetric real kernel with an infinite number of
singular real values u_; < 0. Then, in order to
reconcile this apparent contradiction, we have the
feeling that even if we can show for family (1) that
D(u) never vanishes, in the inverse problem we
certainly find (at least in order to explain these
singular values wu, ;) other potentials for which Egs.
(I1b) or (lc) or both will be rejected. In other words,
if from Eqgs. (1), Eq. (4) was obtained, then certainly
from (6) and (7) more than Eqgs. (1) will be obtained.

In fact our aim will be the study of the Fredholm
determinant denominator of (6) in one of the two
equivalent forms

(0 = 3 8

n=0 n!

X f dx, -+ f dx Alx) - Alx P (xy )+ X,)
m/2 m/2

L LI
2x, X1 + X, x + x,
Py(x;, X)) =
1 .
x; + x, 2x,
(8a)
ad n AVL
D) = exp| (3% |
1 n
T
m/2 2X1
An=[ dxl-'-[ dx,,
Jm/2 Jm/2 (8b)

A(xl) e A(xrz)
% (X1 + x)(xz + x3) - (x, + X))’

where A, are the traces of the kernel of (6). If we
remember our above discussion, in order to take into
account the fact that the solutioncertainly existsalways,
for instance, for Yukawa type of potentials, we have
the feeling that D(u) for / = 0, as well as for / # 0
must make explicit condition (1c). The main result of
this paper is to show that for / = 0, D(u) can in fact

10 See the references given by R. Courant and D. Hilbert,
Methods of Mathematical Physics (Interscience Publishers, Inc., New
York, 1962), Vol. 1, p. 161.
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be reduced in a very simple closed form:

@M)=ena(_ﬁi;1%i%g5)

= exp <_J‘ M) (IX,
miz 2X

where C(o, u) is the inverse Laplace transform of
the potential reconstructed from the discontinuity
#A(x) and B(x, p) = C(2x, w)/2x is the part of the
discontinuity coming from the first Born approxima-
tion. The most powerful and straightforward tool for
the study of the solutions of Eqgs. (6) and (7) or for the
study of D(u) is certainly the Marchenko® formalism
as will be emphasized in the following. But we are
interested in this paper in order to make explicit the
connection between different formalisms so that we
think it is also useful to show the connection between
the existence of solutions of Egs. (6) and (7) and the
inverse problem of the determination of C(«, 4) from
#A(x) as given by the Martin relation.?

©)

III. CONNECTION BETWEEN MARTIN’S
INVERSION PROCEDURE AND D(u)
Martin® has given for Yukawa type of potentials
the relation between C(2x, u) [or B(x, u)] and pA(x).
We recall? that for (1) the Jost solutions can be written
as a Laplace transform

Sk, r) = e"""[l + f we—”pk(a) docil

m

~ e—ikr
and p,(«) satisfies a Volterra integral equation.
Always for family (1) if we define 2(y — x)p.,(2y) =
7(x, ), (y < x), then Martin has shown that

lim 7(x, y) = pA(x)

¥
and the relations giving the possibility of reconstruct-
ing the potential from the knowledge of the discon-
tinuity are

Mmﬂ=ﬂMﬂ—if

m/2

z—m/2

B(u, x — y)r(x, y) dy,
7(x, y) = B(u, y)
y—m/2 _
+ 1 ‘- B(u, y — z)r(x, z)y z dz,
Y Jmj2 zZ—X
zL<y <X,
From (10) it is easy to see that we can put
B(:u’ x) = Z luan(x)O(x - %nm)
n—1

In order to obtain (9), it is equivalent to show that

! f Cole) go 7 B0y e gy
2 ) nm/2 2X hn

where C, is the nth term for the potential B,(x) =

(10)

mn &
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C,(2x)/2x. 7(x, y) can also be written as

(x, y) = Zl p (X, Y)Yy — dnm).

Then, from (10), if we substitute these expansions we
get two relations B, = Hy(B;, - B,_1, 71" Tp1)
and 7, = Hy(B,, " B,, 7y, 7,_1) such that if we
know By, *-B, ;, 7, " T,_1, We can obtain B,
and 7, as function of A. In this manner we get

B, =71, =A,

1 r-m/2
Mﬁ=;(m Alx — YAY) dy,
'x:m/Z y—m/2 _ — X
B(x) =J dyf Jz Ax — Ay — 2)A(2)
m m/2 Xy
x LEZ=2X (g
zZ — X

From By, B,, B, it is easy to verify (11) for 1, 2, 3.
(See for instance Appendix A for B;.) Unfortunately
it is difficult from (10) to find for any n the explicit
form of B,(x). However in the following section from
Marchenko formalism we demonstrate the relation
(9) such that in fact (11) is true for any n. [See the
expression of D(u) given by (8b).] Then the connec-
tion between Martin’s relation and the Fredholm
integral equation (6) given by dispersion relations
becomes clear. When we reconstruct the potential
C(a, u) from the one-to-one Martin’s correspondence
between C(«, u) and uA(x) then

C(aa ‘M) = Z ,"'ncn(“)a(“ - nm)
and the nth iterative C, (o) is such that

[ Sy,
Jmn o

equals the nth trace of the kernel A(y)/(x + y). The
circle of convergence in the 4 plane of

*® Cpla
Z Iu”,[nm -i(x—z_) da
is determined by the smallest modulus root of
D(u) = 0. It will be shown in the following paper that
these roots correspond to the reconstructed potentials
becoming repulsive and singular as r—2 near the origin or
C(«, p) =~ const a.

o—> 0

IV. EQUIVALENCE BETWEEN MARCHENKO
FORMALISM AND DISPERSION RELATION
IN THE f/f FORMULATION

In potential scattering we can consider two different
formalisms in order to obtain the Jost function. The
first one is derived from Green’s functions formalisms
where we get integral equations with kernels propor-
tional to the potentials. In this manner we get for the
Jost solution a Volterra integral equation directly in
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coordinate space or by using Laplace transform. In
these cases for S wave and regular potentials the
Fredholm determinant is 1.

If we remember our discussion in the Introduction,
this corresponds to the second point of view: the case
where the parameter is in fact the coupling constant
2 of the potential AV(r) and where the integral equa-
tions are linear in 2. The second approach comes from
dispersion relations and we get the resulting integral
equation of the Fredholm type (4) or (6) with
kernel proportional to the discontinuity. If we try to
identify term by term the two formalisms, in principle
we have only to replace the potential by its series
coming from the discontinuity or the discontinuity
by its series coming from the potential. [In Eq. (10)
in one case we put the discontinuity as #A(x) and B
or C as B(x, u) or C(a, u); in the other case we put
the discontinuity as A(x, 4) and B or C as AB(x) or
AC(«).] But in practice we have the same difficulty as
in the preceding section—we can make the identifica-
tion easily only for the first terms for both formu-
lations. This type of technical difficulty is well known
when we try to identify term by term two formulations,
one given by dispersion relation and the other by the
usual perturbation theory. But there exists another
powerful formalism connecting at the same time-
scattering data (discontinuity), potentials, and Jost
function. This formalism: Marchenko® formalism
uses a function of two variables K(r, y), where K(r, r)
is linked to the primitive of the potential and K(0, y)
is the inverse Laplace of our Jost function F(x) — 1.
The uniqueness of the inversion procedure is satisfied®
if the potential is assumed to satisfy the usual con-
ditions of moments finite. Furthermore K(r,y) can
be obtained from an integral equation where the
kernel is the scattering data (proportional to the
discontinuity). Then, we can, in Marchenko formal-
ism, use the same linear parameter u as for the
resulting integral equation of f/f. Then it will not be
very surprising if we can identify the two formalisms.

A. Marchenko Equations
We recall the Marchenko equations®

K(r,y)=F(@r+y) +J;wK(r, HF@ + y)dt, (13a)

F(x,r) = f(—ix,r) =" + f “K(r, pe dy,
F(x,0) = F(x), (13b)

V) = =24 (k(r, ), (130)
dr

+o
5 =S Mt 4 o= [Tt - Sk,
=1 T J— (13d)
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where M? are the normalization constants corre-
sponding to the negative eigenvalues — [x;|%. We
want to transform the scattering data (13d) in order
to introduce the discontinuity.

For Yukawa-type family (1) we can rotate the inte-
gration path in the upper-half k£ plane (Im k > 0) for
the integral in (13d). Because for (1) the contribution
along the half great circle (|kf — co, Imk > 0) is 0
then only the cut remains along the imaginary axis
and the poles of the S matrix are also along the imag-
inary axis. The residues of these poles cancel the first
part of the right-hand side of (13d) and we get

F@) =f e~ "ul(u) du.
m/2

Substituting (13d’) and (13a) in (13b), we find for
the Jost solution F(x, r):

o0 A(y)e—r(aﬁ ¥)
miz2 X+ Y

We see that for r = 0 the Jost function F(x, 0) = F(x)
satisfies exactly the same integral equation (6) as given
by dispersion relation.

Because of the equivalence between the two for-
malisms, we adopt the same point of view as in the
preceding sections. We consider formally Egs. (13)
with the only restriction that the potential is local
[in fact we shall obtain a larger family than (1)] and
assume only the regularity condition (7) for the dis-
continuity such that (13a) and (14) are of the Fredholm
type. We still seek to interpret the solutions of (6) with
the help of (13) and (14). Note that we do not assume
the conditions of moments finite for the potentials
such that now the determinant of (13a) and (14) can
vanish.

We remark that the Fredholm determinant of (14) is

io(y,r)=1+z(—ﬂ[ dul‘--f du,,
n=1 n! Jm/2 m/2

(13d")

Fx,r)=¢"+p F(y,rydy. (14)

X (H A(ui)e""“") P(uy, " u;, - -u,), (15a)
n=1
< n An
D) = exp (= 3 52 )
Al(r) =fw e—2ru1 A(ul) dul ,
m/2 2u1
A, =f du, - - f du, (15b)
m/2 m/2

TTA@er

n=1

X
(uy + ua)(uy + ug) - - (u, + uy)
such that for r = 0 we have D(u, 0) = D(w).
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In this paper and in the following we want to find
general features for the solutions K(r,r), F(x,r),
F(x, 0), F(0,r) of Eqs. (13), (14), and (6) when the
condition (7) is assumed for the discontinuity.

The Discontinuity Replaced by a Simple
Pole
As illustration we consider first the simple case
ulA = pué(x — b) “As has been known for some
time” ** the Jost-Bargman potential’® leads to this
type of discontinuity. From Eqs. (13) and (14) we get
in this case

B. An Example:

—2br

o e
"D = e

reen = [+ (i)

We remark:

(a) The Fredholm determinants of (14) and (13a)
are the same.

(b) K(r, r) is written as a ratio where the numerator
is the derivative of the denominator, this denominator
being D(u, r) = 1 — (u/2b)e 2",

© .
V(u, 1) = 86* 3 (;‘—b) e
and
B (x) = ”2(3") 4% s 2% — 2bm).

We can then verify

A Pn = P2y = [ * e Bal®)

Jm/2 2x
for any n and r> 0. [For r = 0 this is relation (11) of
the previous section.] We have also

V(p, r) = 2 (u*[n) d*A,(r)]dr".

(d) u = 2b is the root of D(u) = 0. For |u| < 2b,
then D(u,r) cannot vanish; V(u,r) is a regular
potential without poles for r > 0; F(x,r) has no
poles for r > 0; the series of the traces > u"A4,(r)/n
as well as the series

1 o
3.
converge for r > 0.

(¢) For pu=2b, V(u,r) becomes singular and
repulsive like r2 at r = 0. For u > 26, V has a pole
of the second order in » > 0 and the corresponding
“‘bound state” is a ghost with a pole in r > 0 for the
ghost-wave solution.

For u < —2b we never encounter other roots of

Col®) v
P e

o

11 1., Heller and M. Rich, Phys. Rev. 144, 1324 (1966).
12 R. Jost, Helv. Phys. Acta 20, 256 (1947); V. Bargmann, Rev.
Mod. Phys. 21, 488 (1949); Phys. Rev. 75, 301 (1949).
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D(u) and D(u, r), V has no poles for r on the real
axis (Re r > 0), the bound state is a true bound state.

We remark also that F(0,r) can be written
D(—u, 1)/ D(u, r) showing the connection between
roots of D(Fu,r), (r > 0) and poles or roots of
F(0, r) (r > 0)—therefore, the connection between
ghosts and bound states.

C. General Case: Fundamental Relation between V(u, r)
and D(u)
Now we come back to the general case: First with

the bound given by De Alfaro and Regge®

|P,(u)| < 1_[1 2—

we get from (15a)
D, )] < el Ren),
ID(p, 1) — 1] < AW RED _ | < pdw® _

A(u, Rer) =f A e 2Rer gy,

mi2  2U
where Rer > 0.

(a) It is shown in Appendix B that in the general
case the Fredholm determinant ©(u, r) of (13a) and
(14) are the same.

{(b) It is shown in Appendix B that in the general
case we have from (13a):

K(r, 7) = (di D, r)) / D, 1); D, 0) = D(p).
(17)

(16)

From our fundamental relation (17) we get

exp (— %ﬁwdxfme(u, ) dt) = D, 1), (18a)

exp (— % fo " dx f "V, 1) dt) — D), (18b)

where we have used the fact that, following the
bound (16),
1Dy, 1) — 1.
o0

Because of (17), K(r, r) for r > 0 can have poles at
most of the first order [D(u, r) is analytic in Re r > 0],
in these cases the integral in (18b) is taken as a Cauchy
principal value. If the pole corresponds to an end-point
singularity » # 0 in (18a) or r = 0 in (18b), then the
corresponding D(y, r) or D(u) are equal to zero.
The different cases D(u,r) =0 or # 0 (r > 0) are
discussed here and in the following paper. If we write
V(u, r) as a Laplace transform, then

1 f o S )
2 m O(.2

= —log D(u, r) = Jr >0,

2#

For r = 0 this is the relation (9).

(19)
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(c) The relations (18a) and (15b) give us the possi-
bility of writing V(u, r) as a series in u where the
coefficients depend on A(x). Because of our funda-
mental relation (17), then V = 2[(D')> — DD"]/D2
For r=1ry> 0 fixed, these expansions will have
circles of convergence given by the smallest modulus
root of Dy, ry),

oc n 42
Vi, =23 L4280
drt

A=l R
where A4,(r) is given by (15b). [We give the explicit
form of (20) in the introduction.]

If we consider the nth term of the inverse Laplace
transform C(a, u) = 3 u,C,(«), we get from Eq. (19)

! f Teer 2@ 4, 4D @1
h

2Jm o

For r = 0 this is the relation (11) of the above section.

When we take the inverse Laplace transform of (21)
we can get different equivalent expressions depending
upon whether we use A,(r) or A.(r) or A,(r). For
instance with A, (r) we get

C.(2x)
x—m/2 uy—m/2 Up—g—m/2
=f dulf duy - f du,
(n—1)m/2 (n—2)m/2 m/2

2x
% Alx — u)Auy — uy) - - Au,_ o — u, 1) AMu, )

(x — ug)(uy — ugh(up — ug) " (Upg — Up o)y s
(22)
Note that because of the ranges of integration, the
denominator in (22) cannot vanish,

First we observe from (22) that C,(2x) =0 if
2x < nm; second, (22) is the solution for any n of the
equations (10) where we were unable to find directly
the general term B, [In Appendix A it is shown for
instance that (22) for n = 3 gives the same result as
Bj given by (12).] Third, from the explicit determina-
tion of the nth term C,(«) given by (22) it is easy to
verify the property previously given by Martin?: if
A(x) is known up to X = Xmax, then C(«, p) is known
up to « = 2xmax and the reverse is also true.

(d) First for |u| sufficiently small, the De Alfaro
and Regge condition can be satisfied if A(x, 0) < log 2.
In this case we see from the bounds (16) that both
D(u,r) (r > 0) and D(u, 0) cannot vanish. F(r, u)
has no poles for r > 0 and the corresponding solu-
tions F(x, r) (r > 0) of (14) and (6) are unique and
exist always.

Second, these results are probably true for larger
|u| values. We assume that A(x) has only a finite
number of changes of signs. We call u,; and u_; the
positive and negative roots of D(u) and (u; < w4,

, >0, (20)

r>0.
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lp_;l < |p_cian)). We consider
Il < inf (uq, [u_yl).

In this case, the series of the traces [of (6) or (14) for
r=0] > u(A,/n) (r=0) converge following (19)
because the circle of convergence is determined by the
first smallest modulus root of D(x) = 0. In this case
because of (19), as long as C(2x, w) exists for |u| <

|u
fw C(2x,1) .

miz  x2

C»

<

and the potential is “regular’ at the origin. [This
follows also from the fact that the solution
F(x, r)— const
r—0
when D(u) # 0.] But because C(a, u)/o? is integrable
then e=*"C(a, u)/«? is also integrable for » > 0 and

m o

< oo.

It follows from (19) also that D(u, r) cannot vanish
in the same range || < |l and the series of the traces
(19) for r > 0 of the integral equation (19) converge
also. Furthermore in the same |u| range, V(r, u) has
no poles for r > 0 and the expansion (20) of the
potential converges. In conclusion this range is charac-
terized by

f e“‘"c—‘(—u)’ <o, r>0.
m 0(2

(e) The cases |u| larger than inf (x;, |u_,|) will be
studied in the following paper'® for the solution of
(14) and (6) as well as the interpretation in terms of
V(u, r) and the connection between bound states and
ghost. We will find in general that the roots u.;
correspond to V(u, r) becoming repulsive and singular
like r~% at the origin. We shall also find a larger
domain in g (not |u|) where the solutions F(x,r)
(r > 0) exist in the Fredholm form with acceptable
physical meaning.

D. Case Where pA(x) = A(x, 2)

In this section we have assumed that the discon-
tinuity is uA(x) with g as a linear parameter. But, as
we have said in the introduction, we can adopt
another point of view where the discontinuity is
A(x, 2) given by the Born series > A?A (x), and 4 is
the coupling parameter [for instance, for family (1)]
of the potential. In this case we write

F(@) = —f e ™A(u, 4) du
m/2

13 H. Cornille, J. Math. Phys. 8 (to be published.)
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and we still obtain the integral equation (14) or our
fundamental relation (17), where uA is replaced by
A(x, 2). In this case the Fredholm denominator of
(14) and (6) is

exp (—— %f Ae " -——-—C(a)doc

m 012

), r>0.

This shows for instance [note that
J‘ A ¢ da ’ < ®

m o?

is slightly weaker than (lc)] that for Yukawa-type
potentials (1) the solution of the resulting integral
equation written in the Fredholm type exists for any
values of the coupling constant 2. We want to empha-
size that with this point of view, the potential or the
first Born discontinuity is the input and contrary to
the other case we have not of course to study the
properties of the reconstructed potential.

V. CONCLUSION

In this paper we have shown that the resulting
integral equation of the f/f equation can also be ob-
tained from Marchenko formalism. This fact gives
the possibility to seek for the existence of the solu-
tions and to interpret their meaning for “regular
discontinuities.”

First if the whole discontinuity is linear with respect
to the parameter u, then for {u| < inf (4, [#_,|) the
solutions exist always and V(u, r) is regular at r = 0.
The case |g| > inf (u,, |u_4|) will be discussed in a
following paper.'?

Secondly, if we consider the discontinuity as given
by the Born series 3 A?A (x) with 4 coupling constant

HENRI CORNILLE

of a regular potential (like Yukawa type) or coupling
constant of the corresponding first Born term, then
the solution of the resulting integral equation exists
always.
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APPENDIX A
We want to verify
(72,
am/2 2X

where By is given by (12). This can be made directly
but we want also to verify the equality of B, given by
(12)and (22). In (12) weput V=x —z, W=x —y
and after we put V' =y, W = z such that we get

r—m/2
By(x) = f Ax=»
xf”""/z Ay = AR + 2) ;) dy.

m/2 xy(x — z)

Now we add to this result B, given by (12) and we get

_ C(2x)
By(x) = %
=fx_m/2A(x _ [T A= DA dz dy.
m m/2 y(x - Z)

This is the result obtained from Marchenko formalism
(22). Now we put x =x; + x, + X3, ¥y = X3 + X3,
z = x5 and we get

A(x)A(x)A(x;) dx; dx, dxg

foare=l L0
3m/2 2X m/2 Jm/2 Jm/2 2(x1 + xz)(xz + x3)(x1 + x, 4+ x3)

and

0=f 59Mx—ﬁ=1f MJ MJ dx,
3m/2 2x 3 6 m/2 m/2 m/2

ADAXIAx)[3%; + 3x5 — 2x; — 2%, — 2x4]

(x1 + xo + x3)(x1 + x2)(x5 + x3)(x3 + Xx;)

APPENDIX B: DETERMINATION OF K(r, r)
We study the Fredholm solution K(r, y) for y = r of (13a) with the scattering data given by (13d’). We put

F (1) = uG(r).
We want to show that the solution K(r, y = r) of

K(r, y) = pG(r + y) + f K, 0G(y + 1) dt

with
G@+0=f

can be written

e—(1/+t)uA(u) du

mf2

(B1)

K@, r) = (% D(a r)) / D, 7,

where D(u, r) is given by (15a).
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1. The Fredholm determinant of (B1) and (14) are the same. The Fredholm determinant 5(p, r) of (Bl)is

G(2ty) Gty +1t) -+ Gt +t,)
G(tz + 1)
_ ¢, \B o ®
Bn =1+ 3 Car [,
n=1 n! r r
G(t, + 1) e G(2t)
_ _ oo(_u)noo w© ood © n
Du,r)=1+4+% dt, dt, Uy du,Q,(t; , u) (1T A(uy)),
n=1 n! r 7 m/2 m/2 n=1
where
e—2t1u1 e—(t1+t2)u1 .. e—(t1+t,,)ul e—2t1u1 e—tg(u1+u2) e e"”("“’“"’
e—(tl+t2)uz e—tl(u1+u2) e—2t2u2
Qn = =
e—(t1+tﬂ)uﬂ PPN e"ztnun e"l(“l‘*'“n) . e e-Ztn“n
Then
e—zml e—r(u1+u2) e e—r(uﬁ-u,.)
2u, Uy + Uy u, + u,
e—r(u1+uz)
_ @® ¢ \N o @ n U, + Uy
D n =1+ 5" [ du ([T M) | S (B2)
n=1 nh! m/2 m/2 n=1
e—'r(u1+u,.) e—ZTun
u; + u, 2u,
or
), s (_”)n © ® “ —2ru;
Dy =143 dugeoo|  duPy(uy, - u){ TT AG)e™ ™), (B3)
n=1 H. m/2 m/2 n=1

where P, is given by (8a). The result (B3) shows that D(u, r) = D(u, r) and that for r = 0, D(x, 0) =
D(u, 0) = D(u) as given by (8a).
From (B2) we can write (d/dr)D(u, r) as

D(p, 1) = i(—l)Ml I i du, - - .Jm du, (ﬁ A(u,‘)fw“) (iEk(ul’ o u")).

=1 n! m/2 m/2 n=1
E, is the determinant P, where the kth r0\;' is replaced/ byl---1---1:
1 1 1
2_'41 Uy + Uy o U + u,
) . cen .
Uy +
1 1 < 1
E, = 1
Uy + U
1 1
uy +u, ' 51—‘;
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We want to show that for any &

oo o0 n
Hk == dul b ‘J‘ dun
m/2 mie n=1

H,. We remark that u, appears only in the kth column.

are equai——-for instance, H, =

HENRI CORNILLE

TT AGu)e ) E

For this in E, we exchange the first and the kth row and after that, the first and kth column. Then #,
appears only in the kth row and in the kth column,

1 1
1 By
Uy + Uy 2u,
R
Uy + Uy
1 1
g + U U U
1
u, + iy

1
1
Uy 4+ Uy

Uy 41y
A
2u,

1
U, 4+ U

1

1
Uy + U,
L
2u,

u, appears only in the first column. Because the factor T]; A(u)e2" is symmetric with respect to all the
variables #, and does not change if we put u; = u, and u, = u,, then by this change E, = E, and H, = H,.

Finally,

f-i—(‘i)(u, =3t 1)* f duy -+ fm&duﬁ(};[l A(ui)e”'g”‘f) Ey(us, - uy),
1 1 - 1
11 1
Uy +uy, 2 U, + u,
E, = (B4)
! 1
uy + u, 2u,
2. The Fredholm solution of (B1) can be written
[N 060 + i at
K(r, y) = pG(r + y) + —* ,
) Dy, ry
where N,(y, t) is the Fredholm numerator determinant of (B1):
Gy+1tH GO+t Gy + t,)
G(ty + 1 G2t G(ty + t,)
Ny, ) = Gy + 1) + z(“*” f dn - f a,| : :
1
G(t,+ 1t G, + 1) G(2t,)
K(r, ry can be written
K(r,r) = N(u, r)/D(u, r),
where B -
N(p, r) = N, r) + Nu, ), (BS)
Ny, ry = u®Du, r)G2r),
Nu, r) = /ff N(r, DG(r + 1) dt.
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For N(u, r) we use D(u, r) given by (B3) and we get
—1 n-—1 o o0 .
Sy =3, G [ ety [ g [ (T s ™) P+ )
n=1 (n — I)‘ mi2 n=2
or
1 1 e 1
o L ... _1
2u, Uy -+ u,
’un( )n—l e ® e —2ru; .
Niu, r) = Z a’u1 du, \ TT Aduy)e (B6)
{(n— 1! m/2 1
o L _ ... L
Uy + u, 2u,

We note that the determinant in (B6) is the same as P, except that all the elements of the first row are 1

and the elements of the first column are 1,0+ --0- -+ 0. Now we study ]T/(pz, F):

( )n—z
Nu, ) = 2 dt d!t1 dtn_2 du1 HA(u‘) Zor bty iy, ),
n-—2( 2)' m/e
where
e-—(r+t)u2 e—(r-f—t;)uz e—(r+tn-g)uz
e——(t1+t)u3 e-—2t;u3 e-(tl—i«in,.g)us

— p—lr+tlu
Z,=¢ !

But we have also

e—-(tﬂ-ﬁ-t)un

e_(t”-r”l)““

e“2tn—2un

e—tHurtus) e—tiluztue) oo p—in-sluntus)
e—t(uﬁ"ua) s g~ tn—2lttwtus)
Z, = ¢Tlutuw) ) ®B7)
e—t(uﬂ—u”} e—t;(ug-!—u,,) e—‘%a—-zﬂn
and we get
(=" 2" (= ® i 2
N(‘u, ry= z f duy « - j dun(['[ Afu,)e™ ’"")Ln(ul, g, ' " Uy
g (n—2)! Juse m/2 n=1
where L, is the same determinant as P, but with the first row and the second column lacking
1 I . & 1
Uy +uy Ug+ Uy U, + ts
L1
ul + u3 2u3
L, =
1 N
. uy + u, 2u,n
Now we consider
o0 w0 n
A =j du, - - f d“n(H A(ui)e"”“") M, (uy, - u,), (B8)
m/2 mi2 n=1
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with
0 1 1 1
11 1 1
uy + uy 2uy Uy + ug uy, + u,
M, = =2(-’1)k+1Mn,k’
n=2
1 T
uy + u, 2u,,
M, is the same determinant as P, except that all the elements of the first row are 0, 1, 1, - -+, 1. We develop

M, following the elements of the first row, where we call M, , the minor corresponding to the kth element
of the first row. We remark that L, = M,, ,. We want to show that

K« PO n
f J duy -- f du"(H A(”i)edrui) M, uys s uy 4+ (=1 My oy, o u,)] = 0. (B9)
m/2 m/2 n=1
For this, in M,, ;, we make the following substitutions: row 1 —row 2, row 2 —>row 3, -, row k — 2 —

row k — 1, rowk — 1 —row 1. Then we get a new determinant Mn,k = (——1)"M,,,,c and

1 1 1 o 1

uy +u, Uy 4 uy e+ upy U+ U, + U,
1 1 Lt

uy + uy 2u,y Uy + Uy_y Uy + g Uy + Uy

M, , = 1 1 1 o 1

Uy + Uy U+ Uy Upy + Upyy U1 + Uy
1 1 1 A S

Uy + U U+ Uy Up1 + U 2uppy Upir + Uy
1 1 1

w ot Uyt 2u,

Then, using the fact that the factor of M, , in the integrand of (B9) is symmetric with respect to all the variables
U;, WE DUt Uy = Uy, Uy = Ug, U3 = Uy, """ Uy = Uy, and we get the relation (BY). Taking into account the

relations (B8) and (B9) in (B7) we get

— ) — 1)1 5]
N(u, r) = gzlu"(__ll_ f du

(n —_ 1)' m/2

. f ) dun(ﬁ A(u,-)e'z”“‘)
m/2 n=1

u; + u, 2u,

0 1 1 - 1
1t 1
uy + uy  2u, u, + u,
1 1

(B10)
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In (B6) and (B10) the two determinants are the same except the first column. If we add these two determinants

we get [see (B4)]

N(p, ) + N(u, ) = (d]dr)D(u, r)

and finally

K(r,r) = d[dr)D(p, r) ‘
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ghost-free solutions exist, if the subtraction constants are not too large, but that these solutions are not
unique, since the Castillejo-Dalitz-Dyson ambiguity is not resolved by the requirement of crossing

symmetry.

1. INTRODUCTION

HIS work is an initial attempt to answer the

question as to whether the S-matrix equations® have
solutions. In the following pages, the partial-wave
N[D equations for the system =7 — 7w,* with full
crossing symmetry for the absorptive parts of the
amplitudes up to a finite, but arbitrary cut off, are
considered from the standpoint of a fixed-point
theorem.?® It is found that solutions exist, if the
Castillejo-Dalitz-Dyson (CDD)* pole inhomoge-
neities are not too large, but that these CDD
ambiguities are not resolved by the requirement of
crossing symmetry.

It has been suggested in the past that the S-matrix
requirements may be so stringent that no solutions
exist, and that soluble simple models are impermissible
approximations of the exact equations. The results of
this paper go some small way towards a resolution of
this uncertainty. The crossing-symmetric N/D equa-
tions do have solutions, but these possess the CDD
ambiguity. Hence one might expect simple *“‘boot-
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strap” models to make some limited sense; but one
should not necessarily expect them to be free from
all undetermined parameters.

The fact that at least one solution of the =n
equations exists should not be a surprise to readers
of the numerical work of Chew, Mandelstam, and
Noyes.? Their “S-dominant’ solution is an example
of the regular type of solution that is the concern of
this paper. Nothing will be said for, or against the
existence of a “P-dominant” singular type of solution.®
However, that is not to say that the present work is
necessarily divorced from the undoubted existence of
the p-meson. It is possible that the “physical”
solution is a regular solution containing a CDD pole
in the P wave; and reasons for expecting this are
collated in the Conclusion of this paper. This would
mean that the p-meson parameters are incalculable in
a one-channel 77 system, although one may be able
to calculate them from suitable many-channel
equations.

In an interesting paper,” Lovelace showed that if
the crossing-symmetric partial-wave equations possess
a solution, then it is locally unique if there are no
CDD poles, and not unique if there are CDD poles.

5 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev. 119,
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The present work agrees with Lovelace’s results; but
it goes further, in that it proves the existence that was
an explicit assumption of the earlier work. This is not
a trivial point, for while there is no doubt that the
universe exists (Wittgenstein notwithstanding), it is
not clear that, at some level of approximation, it is
a solution of the S-matrix equations.

In this paper, only the one-channel 77 system will
be considered, although an inelasticity factor will be
included. For convenience, it is assumed that this
inelasticity is everywhere bounded, and that it satisfies
certain smoothness conditions to be specified later.
These conditions could certainly be relaxed. It is
known that the effect of other channels may not be
fully incorporated in the inelasticity factor, and that
one-channel CDD poles may be required.®?:1° The
many-channel system, as well as the complications of
spin, will be considered in a later work, but it is
expected that the same general results will apply.

In Sec. 2, the crossing-symmetric N/D equations
are reformulated in such a way that infinite scattering
lengths are excluded, and the CDD ambiguity is
introduced so that the D function always remains
finite in the physical region. This reformulation is a
convenience for the ensuing proof. In Secs. 3 and 4,
it is shown that the equations comprise a bounded,
continuous, nonfinear mapping of a set of functions
in a Banach space into a compact subset of the space.
Under these conditions, the Schauder fixed-point
principle, which is explained in Appendix A, asserts
the existence of a solution. To aid the reader in a
preliminary comprehension of the outlines of the
proof, a few nonrigorous remarks concerning an
iterative method of solution may be in order. The
work of Sec. 3 may be regarded as a demonstration
that, if the starting function for an iteration of the
crossing-symmetric equations is not too large, then
every iterate is bounded. In fact, each iterate may be
represented by a point, its norm, in this case simply
its maximum value. According to the proof of Sec. 3,
the infinite number of points representing an infinite
iteration would all be contained in a finite segment of
the real line. By the Bolzano-Weierstrass theorem,
there must be at least one point of accumulation on
this line segment. Sec. 4 is devoted to the demonstra-
tion that at least one such point of accumulation is in
fact the image of a solution of the system. To be able
to assert that there is a “point of accumulation” in

8 E. J. Squires, Nuovo Cimento 34, 1751 (1964).

? M. Bander, P. W. Coulter, and G. L. Shaw, Phys. Rev. Letters
14, 270 (1965).

10D, Atkinson, K. Dietz, and D. Morgan, Ann. Phys. (N.Y.)
37,77 (1966).
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the Banach space of iterates, just as there is one on the
line segment on which the norms were plotted, one
must show that the iterates belong to a compact
subset of the space. This is done in Sec. 4. However,
this is not enough to demonstrate the existence of a
solution, for there might be two points of accumula-
tion in the space, and the iteration might jump
alternately from the vicinity of one point to that of the
other. Under these conditions one would not have
found a solution. However, this possibility can be
excluded by showing that the equations comprise the
action of a continuous operator. This demonstration
is also contained in Sec. 4. In Sec. 5, it is shown that,
if the CDD parameters satisfy certain restrictions,
then the partial-wave amplitudes have no ghosts.

2. CROSSING-SYMMETRIC N/D EQUATIONS

In this section, the crossing-symmetric equations of
Chew and Mandelstam? are rewritten in a form more
convenient for the nonlinear analysis of Secs. 3 and 4.

Let the scattering amplitude in a state of isospin /
and angular momentum / be A/(s), where s is the
usual invariant energy square. Then an N/D decom-
position will be assumed in the form

Af(s) = (s — 4u*)'N{(s)/ D{(s), (2.1)
where u is the pion mass. One can write down unsub-
tracted dispersion relations for N/(s) and DI(s):

Im Af(s")

mJ-AS — s

NI(s) = PX(s) + 2 f "y
x DAY — 4y, (2.2)

DI = 0}(s) - f e (ﬂf

4rs — s s
X RI(SINJ(s)s — 4p®). (2.3)

In these equations, a cutoff has been imposed on the
left-hand cut, at s = —A, The absorptive part
Im Al(s) is to be determined for —A <5< 0 by
crossing. The inelasticity function RI(s) satisfies

Im A{(s) = R{(s) |4{()I* (2.4)
and this is supposed given. It would seem at first that
the D equation might require subtractions in general,
and that the functions P/(s), Q(s) could be arbitrary
holomorphic functions. It will be shown, however,
that Eq. (2.2) can be written without subtractions, if
one allows P{(s) and QI(s) to contain poles. For
suppose a certain decomposition (2.1) existed in
which NI(s) = O(s%) for s — oo, with « > —/. Then
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a new decomposition could be defined by the replace-
ments

NLI(S)_’,”]\]&,

H(S - Sr)

r=1
Di(s)

n

..!;_[1 (S - S,.)

where the s, are arbitrary, real, and distinct points
satisfying 0 < s, < 2u4%, and where n is any integer
greater than « + /. Thus, the new integral in Eq. (2.3)
will converge with no subtractions (assuming that
RI(s) is bounded); P/(s) and QI(s) will be modified by
the replacements (2.5). Since the new N/(s) and the
integral in Eq. (2.2) tend to zero as s — oo, it follows
that P/(s) can be at most a sum of poles. If Q1(s) + 0,
as s — oo, a further replacement of the form (2.5)
can be made, including a sufficient number of factors
so that the modified QI(s) does tend to zero, and can
thus be at most a sum of poles.

Equations (2.2) and (2.3) are not explicit in one
respect: NI(s)(s — 4u®)' must tend to zero as
s— 0. To avoid the introduction of / nonlinear
moment conditions, another transformation will be
made. At the same time the variable s will be replaced
by the symmetric, dimensionless variable

2
w=1= aL .
2u®
The final transformation is

mwsga—mwm

(2.5)
D{(s) —

s

(2.6)

Q2.7

o e
dj(w) = (s_—4‘u2), Di(s), (2.8)

where, again, the §, are arbitrary points in (0, 2u?).
It follows from Eq. (2.1) that

Al(s) = ni(w)/d(w)
and the new equations are

(2.9)

1 [t d ’ I ’
wm=ﬂw+—J,w al(—w') d('),
WTJ-A 00 — QW

(2.10)

1 1 f‘” do’
(w—1" 7h o —o
x plw)rj(o)nf(w), (2.11)

df(w) = q{(e) +

where
p(@) = [(@ — Di(w + DT,
rl(w) = R{(s),
=14 A28
al(—w) = Im 4{(s), s <O.

(2.12)
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The threshold condition has been made automatic by
the introduction of the /th order pole in the d equation.
A more general form of the d equation would contain
aterm ¢t (w)(w — 1)7" in place of (w — 1)7¢, where
tL (w) is an (/ — 1)th-order polynomial. This poly-
nomial could be removed by dividing ! (w) and d’(w)
by t1,(w), which would effect a modification in the
forms p](w) and gl(w). It has been shown that p(w)
and ¢/(w) can be written as sums of poles at arbitrary
positions in the interval (—1, 0),

v R,r

pl(w) = 3 ——, (2.13)
r=10 — Pr
LT
gi(w) =3y ——, (2.14)
r=100 — T,

where 4, v, R, T, p,, 7, can all depend on / and /.
In the more general form, p!(w) and ¢/(w) would
contain poles also at the sites of the zeros of the
polynomial tf (w) that was introduced above. If
none of these zeros lies in the physical region (1, o0),
there is no difficulty in generalizing the proof; this is
left to the interested reader. In this paper, it will be
supposed that each of the p,, 7, lies in the interval
[—1, 0]. Since AI(s) has no poles (i.e., there are no
bound states in the w7 system), then for every pole
of pl(w) there must occur, at the same position, a pole
of g1(w). Hence, ¢{(w) has at least as many poles as
has pI(w). The fact that p](w) and ¢/(w) are arbitrary
constitutes the CDD ambiguity. Poles of ¢/(w) that do
not correspond to poles of p!(w) may be called CDD
poles of the first kind (“classical CDD poles™),
whereas coincident poles of p!(w) and ¢7(w) could
be referred to as CDD poles of the second kind.
They correspond to simultaneous subtractions of the
N and D equations in the formulation in which no
poles are allowed in N.

It is necessary that Eqs. (2.10) and (2.11) be modi-
fied slightly for the two S-wave amplitudes. In the
form of Eq. (2.11), it is not possible to exclude a zero
of d{(w) at the threshold & = 1 (i.e., an infinite S-wave
scattering length). Since such an eventuality would
vitiate the subsequent proof, a simple pole is retained
in the d equation at threshold, with a cancelling pole
in the »n equation. Thus, for the S waves one has

I
n{(w) = pi(w) +
w—1
—1 '
+ lf ,d‘“ oal(e) di(w'), (2.15)
mJ-A N — W
1
di(w) = qi(0) + ——
w—1
-2 [ s, @16
mJ1L W —w
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where a! is the S-wave scattering length for isospin I.
The left-hand cut discontinuity af(—w) is to be
determined by crossing symmetry. The usual crossing
relation? is
Im Al(s) = 1
s—4

2 0
: 2B 2
I'=0 =0

(I’+l')_even

4;12—-3 ’
xf ds’P,(l + ——25—2)
au® S — 4,u

x P,,(l PR 2) ImAL(s)  (217)
s —4u

Q@I+ 1)

for 0 > s > —A, where it is known that the infinite
series converges only when s > —9u?. The isospin
crossing matrix is

2 2 10
5 3
Bir = {§ 1 =3 (2.18)
2 -1 1
3 3

Equation (2.17) is now rewritten in terms of of(w),
and the substitution of —w for w is made through-
out. It will be convenient to introduce the quantity
EI(w’) by the following definition:

w —1 }21"%%31,,(0)’)
24— 1) !

for 1 € o' < . The factor (v’ — 1)2+12 g the
known threshold behavior of Im AZL(s’), and the
denominator 2(4 — 1) is introduced as a convergence
factor, as will become clear later. Actually, it will only
be necessary to work with EZ(w’) in the range
1 < o’ < A Then Eq. (2.17) has the form

L ]
(w) = 2 Bir E

=0 1
r +l Jeven

xP,(1—2w+1) (1—2 1)
w+1 w —1

N [(w' -1
200 — 1)

where the partial-wave series has been cut off at
I' = L. It is felt that an attempt to extend the proof
to L = oo would probably be fruitless within the
framework of the N/D equations, since the rate of
convergence of the Legendre series depends on the
positions of the boundaries of the double-spectral
functions.* This information is not contained in the
N|D equations. Accordingly, any attempt to encom-
pass an infinite number of crossed waves would have
to employ the analyticity in s ® ¢, and would probably
progress the more simply by not taking recourse to
partial-wave projections at all. Such considerations lie

Im AX(s') = [ (2.19)

do’

e+
:‘ El )2l + 1), (2.20)
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outside the scope of the present work. It will be
shown that, under certain conditions, solutions exist
for arbitrary, but finite 2 and L. However, one would
expect that any physically sensible solution, if such
exists, would have 4 <% (ie., A < 9u?) and L not
too large.

Lastly, since the absorptive part on the right-hand
cut can be expressed in terms of N and D, one has

204 — 1)t
Ei(w) = [g}

w—1
plo)r{(w)[nf(w)]®
2.21
E{(@)]* + [p(o)r{(@)nl(w)] (22D
for 1 < w < 4, where
El(w) = Re d{(w), o > 1. (2.22)

The objeCt is to study the nonlinear system of Egs.
(2.10), (2.11), (2.15), (2.16), (2.20), and (2.21) for
n!(w) and d](w). Of these equations, only (2.10) and
(2.16) involve negative values of w. This disparity can
be removed for / > 1 by substituting Eq. (2.11) into
Eq. (2.12), thus obtaining the following integral
equation for n!(w):

nf(®) = pl(®) + v{(®) + hi(w)
+—fdw”@?‘”@)
W — W

x p(w)r{(@)nf(e’), (2.23)

where
Fl(w) = lf A0 o rar), (2.24)
o +
I (=D (* do'  ol(o)
hiw) = ™ fl o + oo + 1)’ ’ (2:25)
vl(w) = = f Ao —ai(o S (2.26)
T J1 w r= lw —_ T

The corresponding equatlon for the S waves is

al
n(w) = —— + Pi(®) + vi(w) + hi(w)
+_fdw”@°*ﬁm)
TN o —w

X plo)ri(w)ny(w’). (2.27)

Finally, the equation for E/(w), the real part of

d](w), is obtained by taking the principal value of the

integral in Eq. (2.11) for / > 1, and in Eq. (2.16) for
I=0.

3. BOUNDEDNESS OF THE N/D EQUATIONS

The Eqs. (2.11), (2.16), (2.20), (2.21), (2.23), and
(2.27) can be construed as one nonlinear equation
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for EI(w) in terms of itself:

E{(w) = 0E{(w), (3.1

where 6 is a nonlinear operator that summarizes the
equations cited above.

One can define the following norm for any bounded,
real function F(w):

[F ()| = max [F(w)]. (32

<w<o0
All the functions possessing such a norm form a
Banach space, and it will be the object of the ensuing
proof to show that there exists a positive number Z
such that, under certain conditions to be precised,
a solution of Eq. (3.1) exists, satisfying

&) < Z2 (3.3)

Since ZE!(w) is only used in the interval 1 < w < 2
(below the cutoff), it is convenient to set it identically
to zero for A < w < oo.

The demonstration will be based on the Schauder
fixed-point principle. Let Al(w) be defined by

Al(w) = 05X (w). (3.4)

It is shown in this section that a Z exists, such that,
if ZI(w) is any function satisfying Eq. (3.3), then

1Af ()l < Z2 (3.5)

In Sec. 4, it will be shown that § is a continuous
operator, and that the set of all functions Al(w),
defined by Eq. (3.4), is compact. Then, according to
the Schauder principle, Eq. (3.4) has at least one
fixed point, that is to say, Eq. (3.1) has at least one
solution, and it satisfies Eq. (3.3). This is explained
more fully in Appendix A, where the reader is also
reminded of the meanings of some of these terms.

A. Boundedness of «

The first part of the proof is to show that a Z exists
such that Eq. (3.3) implies Eq. (3.5). The first step in
this program is to obtain a bound for «{(w), given by
Eq. (2.20), assuming that Eq. (3.3) holds for some Z.
Hence, one has

Z2
o+1

2 L
3Bl 3

()] < f “do’ @ + 1)

(I’+l’7even

w—1

2ozt 1) e i)TM' 56

To obtain this result, observe that 1| < o’ < w implies
o +1 <1 4

—1<1-2
w+1 w+1
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and
—w<1—22=1 oy
o —1
so that
-2
w+1
and
’Pl,(l—z“’_l)Fp, 2=\
o -1 o —1

which is positive definite.
It is then easy to show that, for 1 < v < 4,

|ot{(w)| < 1222fw dx , Pz’(x) ,
1 (x 4+ 1) 030 (x + D

@r+,

3.7
where several trivial maximizations have been per-
formed, and where the upper limit of the partial-wave
series L has been replaced by oo. The series and
integral can be performed analytically (Appendix C),
and the result gives

()] < 82* (3.8)
forl <w<L A

B. Boundedness of F, h, and v
From the definitions (2.24) and (3.8), one finds
8(A — 1)Z®

k0]

[Fi(w)] < (3.9)
for any 1 < w < 0. Not only does Eq. (3.8) ensure
that FI(w) is bounded, it also guarantees its (Holder)
smoothness. Specifically,

I n o__ I A ”
Fl (w ? Fl (w) = l J‘ ” dw n ? alI(w”)’
o —w 7 Ji(w” + o)w” + »’)
(3.10)
so that
I S ~J N _ 2
Fl(w) Fll(w )\ < 8(A 1?2 Rt
W — W TOWW
Similarly, Eq. (2.25) yields
8(2 — 1)Z%1
i) < 3E=DZ L (3.12)
7w 2
since / > 1, and (2.26) gives
8(A — 1)Z°
i) < XE=DZ (3.13)
ww
where
[ T [
g =max || > —F < max Y |T,| (3.14)
(LY [jfr=10 — 7, (I,1) r=1
1#0 1#0

(remember that the CDD pole positions and residues
are functions of 7, /, and that , < 0).
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C. Boundedness of n
For the cases /> 1, the integral Eq. (2.23) is
Fredholm. One can assert the existence and square
integrability of nl(w) if unity is not an eigenvalue
of the kernel
1F{(e) — Fi(»)
"—w

y w —

From Eq. (3.11) one sees that

p(e)ri(w).

o) I N o I 2
[ o awr 1E(@) = FilO) ooyt
1 mw W — w
12,274
L 840 41)rZ 615)
v
where
r = max |ri(o)]. (3.16)
1,1

The left-hand side of Eq. (3.15) is an upper bound for
1/22, where J, is the smallest eigenvalue of the kernel.
Hence, if one requires

ARG

7_’_2
S(T-l—)r’ G3.17)

the existence and square integrability of n/(w) are
assured. Equation (2.23) implies that

Ini(w) — pi(@) — vi(w) — hi(@)*

1 Fl(0') — Fi(w) Fl(w) NN
<f [ s p(w)rl(w)}

"f " do k(0P
2.2—~4 1 ] '
<HO-Hrzi 1 f do'[nl(@)F,  (3.18)

ar w 1

where Schwartz’s inequality has been used. Since the
integral on the right-hand side of Eq. (3.18) exists,
the inequality implies that wn] () is bounded. In
fact,

[on{(@)] < lopi(w)] + |ovi(@)|

. + lwhi(@)| + x Jonj(@)], (3.19)
where 80— D s
x=t = g oy (3.20)
7T
thus. m/ria + D)
mr X
lonf) < FEEEEEES o)
where
p = max ||w r
ZI;JO r=10 — p,
< rr}alx ZIIR,I. (3.22)
140

For the S wave, the relevant integral equation is
(2.27). This is not Fredholm, since the inhomogeneous
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term af/(w — 1) is not square integrable. This
difficulty can be circumvented by defining
b = (2= nttw) (3.23)
Po = (w n 1) 0 .

for then Eq. (2.27) is transformed into the following
Fredholm equation:

pie) = fi(w) + f “Ki(w, ) do'gi(), (3.24)

i) = (Z - 1)%

aI
X
w —
and

Ko, 0) =1 (w — 1)%

-+ (@) + vi() + h{(w)], (3.25)

Fi(w) — Fi()

o —w

x(“’+
a)—

7 \w 41 i
) (). (3.26)

Now,

dw dow' K, o')?

_ ' g 3
<xJ‘ dczu(w I)J’Ei_a_)_w+l
1 o+ 1 w? o —1
< 4x%; (3.27)
it will actually be convenient to require
x < 2% (3.28)

(see Eq. (3.32) below). Then one can certainly assert

the existence and square integrability of @l(w).

Condition (3.28) is of course stronger than (3.20).
As before, Schwartz’s inequality gives

k@) — Fl(@)P?
< [ 1Kl 001 do [ 1ok dor
1 1

4x% (= , ,
<% f |9l do'.

In this case |@{(w)| does not exist, because f!(w)
diverges at w = 1. However, the quantity

(@ — Dnl(w) = (0 — D} + Diglw) (3.30)
is bounded. In fact,
(@ — Dni(w)|
< la’| + (@ — Dpi@)] + (@ — V()]
(0 — Do + 1}
w
@ ’ 3
x I~ D@ [ | ]
1 (@ — Do + 1)}
<a+py+ Px + 24 (0 — Do),
(3.31)

(3.29)

+ (@ — Dhi(w)] + 2x

7—T(‘Io +
r



SOLUTIONS OF CROSSING-SYMMETRIC N/D EQUATIONS

where
Py = M[ZMQ :
1=0,2 | r=1 =0
qo—nmx[‘lnq ,
I1=0,2 | r=1 1=0
and
a = max |a’].
7-02
Thus,
a + po + (7/r)(go + $)x

(> — Ding(w)] <

: 3.32
1 - 2¥x (339

D. Lower Bound for E

A difficulty involved in finding a bound for E is that
it is defined by means of a principal-value integral.
Thus, it is not enough for wn](w) [or (» — Dnl(w)]
to be bounded, one must also have boundedness of
the derivative of n’(w). However, a bound for this
derivative can be obtained, since n/(w) satisfies the
integral Eq. (2.23) (the cases / > 1 are treated first),
and the boundedness of its first derivative is guaran-
teed by that of the second derivative of F/(w). The
latter can be deduced from the form of Eq. (2.24).

In order to calculate the bound on E!(w), it will
be necessary first to remove the principal value
integral. One has

E{(w) = + gl(w)

1
(@ — 1)
1 ® do
—;ﬁ-ﬁnw»mmﬁm
I(w)

[( 1 1
__of "_,"z( o)p(w )ﬂ)__

tr "o

do'r (w )p(w )
o'(w' —

which is algebraically equivalent to the real part of

Eq. (2.11). However, here the only singular integral

involves the known function {(w). It is supposed that

rI(w) is sufficiently smooth that the following quantity

exists:

(3.33)

* do'ri(o)p(w)

o'(0w — w)

B = max
Ll

'. (3.34)

T J1
To obtain a bound on the second integral in Eq.
(3.33) one returns to Eq. (2.23), which implies

nl(w) — nj(w')

w — o

» TX
+—f do" — X
mJ1 r

<P + (7/r)(q + $)x

’

ww

1
1[ - P((u//)rll((ul/) ” (unlslu)” ,
w w

(3.35)
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where several trivial maximizations have been per-
formed, for example,

o ,:F,I((u”) — Fl(w) _ Fl(o") — F,I(m’):\

o —o 0 — w o — o
_f dw'" dI((l)IH)l
7 Ji (0" 4+ o)(0" + o) 0" + ") |
ax 1
— — (3.36)
r oo'o

when Eq. (3.21) is combined with Eq. (3.36), one finds

ni(w) —

w— o

P+(7”/")(q + 3)x
1—x ’

(3.37)

— nj() ‘ 1
Inequality (3.37) can now be used in conjunction with
Eq. (3.33) to give, forall 1 < o < oo,

1
(v — 1

El(w) —

1 —x

The crucial point about this inequality is that the
right-hand side is constant, whereas 1/(w — 1) tends
to infinity as @ — 1. Thus, |(w — 1)'E/(w)| has a
lower bound for some finite region including threshold,
that is to say the equations have been written in such
a way that an infinite scattering length is excluded
(this is necessary for the subsequent proof). Clearly
such_an eventuality would not be excluded for the
S wave, if the same inequality (3.38) were used for it,
unless an upper bound were set on the CDD pole
residues in the /=0 equation, or unless a sign
restriction were imposed upon these residues. This
is a possible modus probandi. However, it necessarily
excludes, at the outset, the possibility of an S-wave
resonance, and in the present paper the alternative
procedure, summarized by Eqs. (2.16) and (2.27), is
adopted.
For / > 1, Eq. (3.38) implies

[(0 — l)lE,l((o)| >1—(w—=NDY
1 <o <o,
-

and (@, — 1)! is any number less than 1/{. One can
choose

for all (3.39)

where

+ g, (3.40)

)P + (m/r)(q + 2)x

1—x

@ — 1= [(» = DI, (3.41)
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where » is a number larger than unity that will be
specified later. Thus, for 1 < 0 < @,,
1

(w — VE w)| > 1 — (&, — D' ==. (3.42)

This inequality will be of great importance in the
application of the fixed-point principle.

For the S wave, there is the difficulty that nl(w) is
not necessarily bounded at threshold. Hence, instead
of the quantity (3.37), one uses

(0 = Dng(w) = (0" — Dni(e)

o - (l)
{ mx r(a + py) + [22 — (8 — m)x](qo + } L
Do+ 1 % ’
1— 22 w
(3.43)

this inequality follows from Eq. (2.27) much as Eq.
(3.37) follows from Eq. (2.23). Then the equation for
El(w) is written

El(0) =~ + alto) = = [T 22 i)
(cu — l)n HeeR) a)f do’ ri(e)
(o 1)% 7 J1 o'(w? — l)i'

(0" — Dnk(w’) — (0 — Dnl(w)

X
w —w
— w(w — Dnd(w) = f do’
ri(w") 1 (3.44)
o'(w?® — 1)‘} o — o '
One can show that
P (* do’ 2
‘U_f %(u < 1+ /2
mJ1 (0? — 1) o' (0 — w) 2
1 <o <o (345

Accordingly, it is supposed that rl(w’) is sufficiently
smooth that a number B, exists, such that

w0 I
Bo=max|:wl—aj do’ ro(«) ! :|
1=02 TJ1 o'(w? — 1)% o —w
(3.46)

Then one can deduce the following inequality from
Eq. (3.44):

Bl - | <1,

— (3.47)

where
lo=qo+ rPo2%

+ @t (B4 5+ ) o+ mxta+ )

x [% " 2% _ (4 - g)x}}/(l — 2ty (3.48)
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so that
[(0 — DE§()| < 1/v, (3.49)
forall 1 < w < &, where
@y — 1 = [(ny — D/(vo{o)] (3.50)

and v, is any number greater than unity. The develop-
ment of Egs. (3.47)-(3.50) is an obvious parallel to that
of Egs. (3.39)-(3.42).

E. Boundedness of A

It can now be shown that Al{(w), defined by the
right-hand side of Eq. (2.21), is bounded. The cases
I > 1 will be treated first. It is clear that a bound
exists away from threshold. Specifically,

o F2A—1) 20+3 1
A“”“[w—l] p()rl()
[p(o)rwnl()F
[EX ()] + [p()rH (@i (o)}
so that, for &, < w < 4,
, 200 — )2 6, 4+ 1
lmwns[ ] ( 1» (3.52)

=1 @, —

(3.51)

The quantity @, is defined by Eq. (3.41), and it will be
seen later that

@ —1>1. (3.53)
Hence,
IA )] < 3204 = DP*H@, — 12
= 3tpp — ppt

GG
vy — 1L \#m

foro, << I=1,2,---L

A bound can also be obtained in the range 1 <
o < @, by using the fact that E/(w) has no zero in this
interval. Equation (3.51) is rewrittén

) P+ (7;/*‘1((;+ $)x n q]}z
(3.54)

i+
Azl () = E.(i:_l)]_%
(0 + 1)
ri(@)[n¥ (o)
Kw—DW@W+Kw—nmmmmM@F

(3.55)
Hence, with the help of Egs. (3.21), (3.42), one has

[Al(w)] < 2—'; 204 — 1)]21+%[,, P+ (n/r)(g + %)x}z

1—x

(3.56)
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for 1 € w < @,. Thus, Eqs. (3.54) and (3.56) imply
that Al(w) is bounded throughout 1 < w < A.
For the S wave, Eq. (3.52) becomes

@ + 1)% (A — 1
(@ — 1)

Alw)] < [20 — 1)]%(

Gy — 1
<6 -7 =g

Yo

(3.57)

for @y < w < 4, where Eq. (3.50) has been used,
and it has been assumed that @, > 2 (this condition
can be checked later from Eqs. (3.68)-(3.70)).

In the range 1 < w < @,, Eq. (3.55) is written
(for / = 0) in the form

20— i
(0 + 1}
)@ — Dnk(w)F

8 [(& — DE() + [(© — Dp(w)riw)nio)]?
(3.58)

Af(w) =

Then, Eqs. (3.32) and (3.49) yield

| AY()] < r(2 — 1)*[vo a + py + (m]r)(go + %)xT
1 — 2%

(3.59)
forl < w < @.

F. Conditions for a Bounded Mapping

In this subsection, it will be shown that values of
Z and » exist such that, for any Z7(w) that satisfies
Eq. (3.3), the right-hand sides of the inequalities
(3.54), (3.56), (3.57), and (3.59) are all less than
Z2. 1t will follow then that Eq. (3.5) holds.

As usual, the cases /> 1 are considered first. It
will be shown that, for a general » > 1, a Z exists such
that the right-hand side of Eq. (3.56) is less than
Z2. Then it will be shown that » can be chosen
sufficiently large to ensure that the right-hand side of
Eq. (3.54) is also less than Z2,

The first step, then, is to show that a Z exists such
that

1—x

where the left-hand side here is the square root of the
right-hand side of Eq. (3.56). Upon using the defi-
nition (3.20), and rearranging the terms, one finds

f(Z)=AZ*+ BZ*—Z+C <0, (3.61)

where
_8(A—=1Dr

2 ’
m

A (3.62)
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i

B =214 — )Y —(q + P, (3.63)
w

C = 254 — DFdyp, (3.64)

Notice that 4, B, C are positive. The question is
whether a positive Z exists for which this cubic
polynomial is negative.

In Appendix B, it is shown that a sufficient condi-
tion for f(Z) to be negative for a range of positive Z
values is

1
L—0F""73 3.65
4(B® + 44) (3.65)
or, in terms of the coeflicients (3.62)-(3.64),
1
. (3.66)

<
P DRLA5() — 1)2L+%rv2[(q 13y
4+ 2L 1)—(2L+%)v—2]%
That is to say, the upper bound on the residues of the
poles in the n equation must not be too large. This
is the type of condition one might have expected.
It is shown in Appendix B that when Eq. (3.65) is
satisfied, then f(Z) is negative for
1
Z=—"7——7
2B 4 44)
or, using Egs. (3.62), (3.63), one finds

(3.67)

7 = 7T/2L+4(l . 1)L+i‘r§,‘,[(q + %)2
+ 2_(2L+1)(l _ 1)_(2L+%)‘V_2]%. (3.68)
With this value for Z, and any v > 1, it has been
shown that Eq. (3.3) implies that the right-hand side
of Eq. (3.56) is less than Z2. The next stage is to show
that » can be chosen so that the right-hand side of Eq.
(3.54) is also less than Z2, i.e., to show that
6i2L( A — 1)L+i
y [(gg N B)P + (fr)g + Dx

1 —x

X q:| < Z.
(3.69)

By comparing this with Eq. (3.60), one sees that this
is accomplished by the following definition:

i
v—1s%[(2—r+3) +ﬂ].
r P

m
This value of » is inserted into Egs. (3.66) and (3.68).
Then it has been shown that
[Af(w)] < Z°

fori<w<i,l=1,2,---L.
It remains to be shown that the S wave satisfies the
same bound. The bound (3.59) can be seen to be less

y—1 T

(3.70)

(3.71)
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than (3.56), term by term, if
a + po < [2(2 — D)p,

(3.72)
g0 < [2(2 — D]*q,

and if
1 — 2%
1—x

Vg =¥ (3.73)

In a similar way, it can be shown that the bound
(3.57) is less than (3.54), if the following inequalities
are satisfied:

a+p < 2L(A )L—i v — 1 B + 2r/m
y—1 Bo+r2 +r7rx/2
Qo+ 3 < 20— i
y— 1
B + 2r/=
+ 3).
By + 3r27F — (4 — n/2)x @+
(3.74)

At this point, it is possible to check the inequality
(3.53).

Hence, it has been shown that Z, », and », can be
chosen such that, if the conditions (3.66), and the
stronger of Eqgs. (3.72) and (3.74) are satisfied, then
| Al (w)| is bounded by Z%for all /=0, 1,-- - L.

4. CONTINUITY AND COMPACTNESS

It has been shown in the previous section that if
conditions (3.66), (3.72), (3.74) are satisfied, and if Z
is given by Egs. (3.68) and (3.70), then the operator
6 maps the set of functions (3.3) into the set (3.5). In
this section, it will be shown that this mapping is
continuous, and that the functions Al(w) constitute
a compact set.

To demonstrate the continuity, one has to show
that, for any € > 0, there exists a § > 0 such that for

all Zl(w), :l’ (w), satisfying Eq. (3.3), for which

12X w) — E{ (@)l < 4, 4.1
one has .
) [6E](w) — 2] (w)]| < e, (4.2)
ie.,

IAl(0) — Al(w)] < e (4.3)

It is therefore enough to show that a number P
exists such that

1AL (w) — A{(w)n < P |El(w) — El(w)| (4.4)

for arbitrary E!(w), E! ) satisfying Eq. (3.3); for
then, given an € > 0, one need only choose 6 = /P
to ensure that Eq. (4.4) follows from Eq. (4.1). The
cases / > 1 will be treated explicitly.

From Eq. (2.20) one has, following a treatment

I7ni()
2 [Cll(w) +
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analogous to that leading to Eq. (3.8),

lak(w) — &d(w)] < 8 |1E(w) — EXw)]. (4.5
Then, from Eq. (2.23),
Inf(w) — #l(w)| A
< Jol(@) — i} ()] + [ (w) — hi(w)|
I 1
42 [ dorptoiyriw)| HO=TED vl
B = F@) gy (4.6)
W —w
On using Eqs. (2.24)-(2.26), one finds
lonX(w) — wil(w)] < Py |E (w) — El(@)ll, (4.7)
where
p, = 30— 1)[ P S/ L -1+ _(_qx+ %)x} (1 — 0.
4.8)

In a similar way, it follows from Eq. (3.33) after
some algebra, that

|E}(@) — EXw)] < P; |EH(0) — El()l, (4.9)
where
P, = (% + B)Pl. (4.10)
Lastly, one has
(Al(@) ~ Af(@)] = [“—_‘f—’]“Jr%p(w)r{(w)
 [M@E@] = F@E@T )

[CH()Cl(w)]?
where

Clw) = {[EX@)TF + [p)rionl (P}, 4.12)

and similarly for C’ (w). The last factor in Eq 4.11)
can be written

Y(nE + AE)(n + A)(E ~ E) + (E + E)(n — n)]
[ccr

where arguments and indices have been omitted. Use
is then made of the inequality

|EX()/CHw)] < 1, (4.13)
so that one has
A (@) — Al(w)|
< 200 = Do + Do) o — 1)

Al() ] [rl() + A©) :
C,,(w)]{ |EX(@) — El()]

c’(w)é{(w)
J Ini(w) — )]} (4.18)

+[c 5t aw
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In the interval 1 < @ < &,;, one sees that the
bound (3.42) implies

(e — 1)'CHw)] > i (4.15)

and similarly for (w — 1))C’(w). Hence, in this
interval one can absorb the factor (w — 1)72! in Eq.
(4.14) into the factors 1/C/(w) and 1/CT(w), at least
two of which occur for each term. Hence,

|Af(w) — Al(w)] < P3|nl(0) — Al(w)|
+ Py |E{(w) — El(w)| (4.16)
for 1 < w < @,, where

Py = [2(4 — DEEad2 2 + (#/r)(g + )x
1 —x

3

Py =@, — 1)'E + (";/'z(i-i- ‘z‘)xPS.

Equations (4.7), (4.9), and (4.16) imply
|A(@) — A{(@)] < (PPy + P3Py) |E{(@) — Ef(0)]
(4.17)

for 1 < w < @,. This is part of the demonstration of
Eq. (4.4). It is necessary now to show a similar bound
for the interval @, < v < A

In the interval &, < o < 4, the factor (v — 1)~
in Eq. (4.14) is no longer an incipient source of
difficulty, since it is finite. However, the inverses of the
quantities C¥(w), C{ (w) are potential problems, since
these inverses can, in general, become unbounded.
A zero of CI(w) corresponds to a simultaneous zero
of El(w) and nf(w) [see Eq. (4.12)], that is to say, to
an extinct bound state.'* If such a coincidence occurs
in the region @, < w < 4, the proof of the continuity
of the operator 8 breaks down. It will be shown that
the CDD poles p!(w) and g/ (w) can be chosen in such
a way that no extinct bound states occur in the physical
region, so that |CI(w)| has a lower bound, whence the
continuity of 6 can be deduced. There will still be a
continuum of possibilities for the CDD parameters.
In this section, it is shown that p!(w) can be chosen so
that n!(w) has no zeros in the physical region, so that
|n!(w)} and, hence, |C{(w)| have lower bounds. It will
then be possible to complete the existence proof for
the amplitude 47(w). However, it will be shown in
Sec. 5 that this is not sufficiently general to exclude
ghosts (i.e., poles of A7(w) on the physical sheet) in all
cases. In that section it will be shown that the zeros of
El(w) and n!(w) can be made to alternate in the
physical region, in such a way that C!/(w) always
has a lower bound, and that A/(w) has no ghosts.

11 D, Atkinson and M. B. Halpern, Phys. Rev. 149, 1133 (1966).
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For the present, it will be shown how p(w) can be
chosen so that n/(w) has no zeros in the physical
region. This will be of use in the more general treat-
ment of Sec. 5. The integral Eq. (2.23) can be manip-
ulated to give

lonj(w) — opf(w)]

T ks %
< x|:— G+3)+ 5 x }
r P T VR

{1+ <250 — g + D)
QLA 1)2L+%v2(q + r )

(4.18)

The function wp!(w) is a rational function that can
be written, in general, as the quotient of two »th-
order polynomials. The roots of the denominator lie
in the interval —1 < @ < 0. The roots of the numer-
ator give the zeros of wp!(w). Hence, if p!/(w) is
chosen such that none of the zeros of wp!(w) are in the
physical region 1 < @ < oo, then wp!(w) will have an
invariable sign throughout the region, and so |wp!(w)|
will have a nonzero lower bound, say min |wp!(w)|.
Since v — 1 > f%;;;[ [see Eq. (3.70)], it follows that
¢/p can be made so large that the right-hand side of
Eq. (4.18) is smaller than min |wp!(w)]. Then Eq.
(4.18) implies that |wn!(w)| is always greater than the
difference between min |wp!(w)| and the right-hand
side. Let %! be this lower bound for |wn!(w)| in
I € w < o, for all 7, /. Hence, Eq. (4.12) implies

ICl() > p(@,)m] (4.19)
for all @, < w < 1, and similarly for f{(w). Hence,
Eq. (4.14) gives
[Al(w) — Al(w)] < P [nf(0) — Al(w)]

+ Pi|E{(@) — E{(w)| (4.20)
for @, < w < A, where
_ 2143 .
P; = [___(l 1)} 2@ — 1)°
@, — 1

x [p(@yl] Lm0 + x|

1 —x
1
P = [p(@yty LTI £ Dx
1 —x
and so
|Al(w) — Al ()| < (PP} + PyP3) 12X (0) — Elw)|

(4.21)

for @, < w < A. The reader who has persevered to
this point can be safely left to supply a parallel proof
for the S wave.
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Inequalities (4.17) and (4.21) are equivalent to
Eq. (4.4), if one defines

P = max [P,P, + P,P;, P,P, + P,P;|. (4.22)

With this definition, the continuity of 6 is proven.
A. Compactness

It has been shown that & maps the set of functions
that satisfy Eq. (3.3), say T, into itself. It is the purpose
of this section to show that 6 actually maps T into a
compact subset of itself, say 7. That is, if Z](w)
belongs to T, one must show that Al(w) belongs to
T’. This can be done, according to Arzeld’s theorem,
by showing that the functions A’(w) are equi-con-
tinuous. These ideas are explained in Appendix A.

To demonstrate the equi-continuity of Af(w), it is
enough to show the equi-continuity of n!/(w) and
(w — 1)'El(w), since the denominator in Eq. (3.55),
namely [(w — 1)!C!(w)}?, has a uniform lower bound
inl € w < 4. Itis easy to show from Eq. (2.23) that
nf(w) is equi-continuous, since each of the terms on
the right-hand side is equi-continuous. For example,
one can see that the kernel is equi-continuous as
follows: Since «f(®) is uniformly bounded for &/(w)
in 7, and since n!(w) is uniformly bounded, as the
work of Sec. 3 shows, and since the integral in Eq.
(2.23) converges uniformly with respect to w, it
follows that this integral is equi-continuous. In a
similar way, it can be shown, from Eq. (3.33), that
(o — 1)'El(w) is equi-continuous, if it is supposed
that r/(w) is such that

P fw do'rl(©)p(e)
1

™ o'(w' — o)

is continuous with respect to .

Thus, it has been shown that Al(w) is equi-con-
tinuous for all /3 0; and the reader may easily
fabricate a similar proof for the S wave. Hence, 0
maps T into a compact subset of itself, and the
Schauder fixed-point principle is accordingly appli-
cable to the N/D system. Under the restrictions on
pl(w) and g!(w) which have been specified, one can
now assert the existence of a solution. However, in
general there will be zeros of d!(w) on the physical
sheet of w. The purpose of the next section is to show
that, by making somewhat more stringent require-
ments on the CDD pole parameters, one can ensure
that all the zeros of d’(w) are on unphysical sheets.
This involves a generalization of the requirement that
nl(w) has a constant sign in 1 < o < oo; but the
essential point, that (w — 1))C/(w) has a uniform
lower bound, is retained.
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5. CONDITIONS FOR THE
ABSENCE OF GHOSTS

In the previous sections, it has been shown that the
crossing symmetric N/D equations have solutions, if
certain conditions are satisfied. The main result of
interest is probably the fact that the CDD ambiguity
is not resolved by the requirement of crossing sym-
metry for the absorptive part. However, in general, a
solution of an arbitrary N/D system will have ghosts;
and so one might suggest that the CDD ambiguity
may be resolved, after all, if one takes into account
the physical requirement that the D function has no
zeros. Indeed, it is the case that a “strong” CDD pole
is often associated with a nearby ghost, so the tempta-
tion to equate a ghost-free solution with the absence
of CDD potes is particularly strong.

It is the purpose of this section to dispel that idea,
and to show that some CDD poles are consistent with
the requirement of no ghosts. The physical reason for
this is rather clear. If the CDD pole is in, or near,
the physical region, the associated zero of the D
function can be displaced in a complex direction into
the unphysical sheet. If the sign of the ¥ function is
correct, this zero will correspond to a resonance. This
is not merely an academic possibility. The p-meson
occurs in the /=1, J =1 state, and the f®-meson
in I =0, J=2. Moreover, there is rather strong
evidence!? now for a broad ¢ resonance in I =0,
J = 0. Any, or all of these states may be associated
with a CDD pole. There is even some circumstantial
evidence that this is the case for the p-meson, as is
discussed in the next section.

There are several different ways in which one could
define an N/D system which is free from ghosts. The
following demonstration will be a sketch only, since
it is not intended to be part of the existence proof,
and no attempt will be made to set up general condi-
tions for the absence of ghosts.

Equation (3.43) yields, by a sequence which parallels
that leading to Eq. (3.48),

E{(ow) — — q/(w)

_r
(0 — 1)
< (24 Bt lrinte x e

s 1 —x

(5.1

for 15 0. The rational function (w — 1)~ + ¢/(w)
can be written, in general, as the quotient of two
(u + [/ — Dth-order polynomials, which will possess
(u + 1~ 1) zeros. For large gl(w), this rational
function will be larger than the right-hand side of

12 C. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters 22,
332 (1966).



SOLUTIONS OF CROSSING-SYMMETRIC N/D EQUATIONS

e

e
| 1 ‘*’t

{X) -

2293

aliowed crrcles for zeros of d}{w)

/ \
- X , P — b

S

allowed intervais for zeros of n’L(w)

Fic. 1. Interleaving zeros of n)w) and EX(w). X = Zero of ni(w),
O = Zero of El(w), {> = Zero of di(w) (on the unphysical sheet).

Eq. (5.1), except in a finite, calculable circle sur-
rounding each of the (u# + / — 1) zeros mentioned
above. Within each circle there will be, somewhere,
a zero of El(w), corresponding to the zero of
(w — 1)t + gl(w) at its center. The object is to show
that the zero can be displaced from the center of the
circle onto the unphysical sheet. Suppose that g/ (w) is
chosen so that all the zeros of (w — 1)~ + ¢l(w) lie
along the physical region 1 < w < . Moreover,
suppose that these zeros are sufficiently separated that
the circles, centered about each one of them, within
which a zero of El(w) lies, do not overlap. Then,
|EI(w)| has a lower bound outside the union of all
these circles.

Suppose that , is a typical (real) zero of Ef(w).
Then, d!(w) can be expanded about w = w, to give

di(w) ~ —irf(we)p(wen{(we) + (@ — wo)
X {E{ (wg) — i[r{(wp)p(weIn(we)]'} (5.2)
for w ~ w,. Hence, d!(w) = 0 for

ir{(wy) p(wo)ni(w,)
0 — Wy N — — 7 -
E7 (wo) — i[ri(wo)p(wo)n; ()]
Hence, the imaginary part of this is

Im o A ri(we)p(woni (we)Ef (wo) .
[EF (wo)]? + {[r(wo)p(woni(wo)] }*

If nl(w,) and EI'(w,) have opposite signs, then Im w
is negative, and the zero of d(w) is on the unphysical
sheet. Since E!(w) has a succession of simple zeros at
each of the points w,, it follows that the sign of
E!'(w) alternates from one zero of E/(w) to the next.
Hence, it must be shown that p!(w), the inhomoge-
neous term in the n equation, can be chosen in such
a way that nl(w) alternates in sign between the zeros
of El{w), so that nl(wy)El'(w,) can be made always
negative. It must be shown, therefore, that n!(w) can
be forced to have real zeros that interleave those of

(5.3)

(5.4)

It has already been noted that ¢ can be made
sufficiently large to ensure that the right-hand side of
Eq. (4.22) is smaller than wp!(w), except in the imme-
diate vicinity of one of the » zeros of this rational
function. Suppose that wp!(w) is chosen so that its
zeros lie in the physical region, in such a way that they
interleave the zeros of (w — 1)7! + ¢/(w). For this
to be possible, it must be supposed that (w — 1)~ +
g¥(w), when written out as a rational fraction, has a
numerator of order not greater than (v + 1), rather
than the maximum of (¢ + / — 1). This can certainly
be done. While this means that the centrifugal term
(w — 1)~ imposes a restriction on the CDD pole
residues, it is equally clear that it does not determine
them. Suppose, more particularly, that the zeros of
wpl(w) are made to lie in those intervals of the real
axis where no zeros of El(w) may lie. Around each
zero of wp!(w), one may specify an interval within
which a (real) zero of n!(w) must lie. By making ¢
large enough, one can ensure that this interval is so
small that none of the intervals in which n!(w) has a
zero overlap any of the intervals in which EJ(w) has a
zero. Hence, the zeros of nf(w) and E](w) alternate,
and so all the zeros of d(w) can be made to lie on the
unphysical sheet. This sketch may be made more
transparent by a reference to Fig. 1.

It is clear that the function C!(w), defined in Eq.
(4.12), has a uniform lower bound throughout
@, < w < oo, since the zeros of nf(w) and E!(w) lie
in mutually exclusive intervals. Hence, the continuity
and compactness proofs of Sec. 4 are not disrupted.

6. CONCLUSION

In this paper it has been shown that, under certain
conditions, the crossing-symmetric N/D equations
have solutions. These conditions may be summarized
by saying that the inhomogeneous terms in the
amplitude (the N-pole terms divided by the D-pole
terms) must not be too large. In the special case that
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there are no inhomogeneities in the N equation, the
trivial (identically zero) amplitude satisfies the N/D
equations. As the inhomogeneity is perturbed away
from zero, so the solution is perturbed away from
zero. However, in general the phase shift will not be
identically zero in the trivial case. It will be zero,
modulo =, and will suffer a discontinuity of = at each
zero of the D function, if any such occur in the
physical region. As the N function discontinuities are
increased from zero, these abrupt changes by = are
replaced by continuous, resonant phase shifts.

No attempt has been made in this paper to find the
largest bounds under which the existence proof will
work. In particular, the bound (3.6), in which all the
cancellations caused by the oscillations of

Pl(l—zw +1)
o+ 1

in Eq. (2.20) have been ignored, is particularly poor.
There can be no doubt that a more detailed account
of this cancellation would relax considerably the
permitted bounds on the inhomogeneities. Presumably,
certain maximal bounds exist, below which the
existence of a solution would be provable.

There is already considerable evidence®-¢ that
bootstrap models of the p-meson do not succeed in
producing a sufficiently narrow resonance. On the
other hand, an SU(6) model of meson-meson scat-
tering'® suggests that a one-channel CDD pole should
be included in the P-wave of the == amplitude. It is
clear that such a CDD pole would permit a much
narrower p resonance (although of course the p
parameters would only be calculable in terms of the
CDD pole residues). On the other hand, it might be
that a CDD solution would not permit a sufficiently
broad p resonance, before a ghost manifested itself in
one of the other partial waves, perhaps the 7/ =0
S wave. If, following the work of Lovelace er al.,1
one accepts the existence of a c-meson, it may be that
this state is engendered by the exchange of a CDD
p-meson. This is, of course, a picturesque, “bootstrap”
manner of expression. What is really meant is that
perhaps the o-meson will be produced in a crossing-
symmetric 77 system in which there is no CDD pole
in the S waves, but one in the P wave. The left-hand
cut in the / = 0, I = 0 equation will be affected by the
presence of the CDD pole in the P wave. It may be
that an upper limit on the CDD pole strength, and so
on the p-meson width, would be imposed by the

13 J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).

14 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).

15 D. Atkinson and M. B. Halpern, Phys. Rev. 150, 1377 (1966).
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requirement that the -meson pole should not encroach
upon the physical sheet. It is not clear whether a
CDD pole would be necessary in the J =2, /=0
wave, to account for the f%meson.

The speculative considerations of the previous
paragraph are in part inspired by a series of papers by
Shirkov et al.,1%-17 who examined CDD branches of
the so-called differential approximation of the ==
equations. The general finding is that the p width
cannot be made large enough, although the ¢-meson
can be incorporated naturally. It is expected that an
existence proof could be constructed for the Shirkov
equations, and it is hoped to do this in a future work.

However, it is rather obvious today that a satisfying
solution of the = problem cannot be given solely in
terms of the N/D equations. In particular, it is not
clear that the requirement of crossing for the real
part of the amplitude would not materially reduce,
remove, or even overdetermine the CDD ambiguity.
Hence a treatment of the Mandelstam generalized
unitarity equations®® seems imperative, with, pre-
sumably, an explicit or implicit projection of the
leading complex angular momentum singularities.
The difficulties in the way of such an application of the
fixed-point theorem are legion, but their mastering
would probably yield very interesting information
concerning the permitted forms of the “strip cutoff
function,””® which is a manifestation of the other
channels to which the =7 channel is coupled, through
unitarity.
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APPENDIX A

Some fundamental ideas of functional analysis are
explained in this Appendix. The definitions and theo-
rems are not given in their most general forms, but
only in sufficient generality for the text of this paper.

Let E(w) be a function belonging to a Banach space
B, and let 6 be an operator mapping B into itself.
Define

A(w) = 02(w). (A1)
Let T be the set of all functions Z(w) for which
[E(w)]| < Z2, (A2)

where the left-hand side of Eq. (A2) is the norm of

18 A. V. Efremov, D. V. Shirkov, and H. Y. Tzu, Zh. Eksperim. i
Teor. Fiz. 41, 603 (1961), and Sci. Sinica 10, 812 (1961).

1%V, V. Serebriakov and D. V. Shirkov, Zh. Eksperim. i Teor. Fiz.
42, 610 (1962) [English transl.: Soviet Phys.——JETP 15, 425 (1962)].

18 5. Mandelstam, Phys. Rev. 112, 1344 (1958).

¥ N. F. Bali, G. F. Chew, and S-Y. Chu, Phys. Rev. 150, 1352
(1966).
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E(w), defined in B, and Z is some number. Suppose
that 6 is such that Eqs. (A1) and (A2) imply
[A()] = Z* (A3)

for some Z. Then 6 is a bounded operator mapping
T into some subset of itself, say 77,

The operator 6 is said to be continuous for the
mapping T — T, if, for any ¢ > 0, there exists a
¢ > 0 such that

IE(w) — E(o)]l < 6 (A4)

implies
16E(w) — 6E(0)| < e, (AS)
where  and & belong to 7. Boundedness implies

continuity for a linear operator, but not, in general,
for a nonlinear operator.

A set in a Banach space, say T, is compact if every
infinite sequence of points belonging to T’ contains at
least one subsequence that converges to some point
of T'.

The Fixed-Point Principle of Schauder

If 6 maps T continuously into a compact subset T’
of T, then at least one “point” E of T exists for
which

E(w) = 0E(w).

(A6)

Sections 3 and 4 are concerned with the application
of this theorem to the crossing-symmetric N/D equa-
tions. The norm that defines the space B is given in Eq.
(3.2). In Sec. 3, it is shown that a set T exists such that,
if 6 maps T into T”, then T’ is contained in 7. In Sec.
4, it is first shown that the operator 6(T— T7) is
continuous. Then it is shown that 7" is compact, so
that the Schauder principle applies. Hence, a solution
of the crossing-symmetric equation (A6) exists.

The proof of continuity is a direct application of the
definition Eqgs. (A4)-(AS). The compactness of 7"
is shown by using the following principle:

Arzeld’s Theorem: The set T’ of functions A(w),
defined on 1 < w < 4, is compact if the functions A(w)
are uniformly bounded and equi-continuous in
1<

The uniform boundedness follows from the work
of Sec. 3. The functions A(w) are said to be equi-
continuous if, for any € > 0, there exists a 6 > 0,
such that

|A(wy) — Alwe)| < € (A7)

for all w,, w, in the closed interval [1, 4], for which
lwy — wp| < 6 (A8)

and for all A(w) in T'. It is this specification of

uniformity with respect to A that constitutes the
difference between continuity and equi-continuity.
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APPENDIX B

Suppose that the coefficients 4, B, C, are positive,
then it is required to find a sufficient condition such
that the polynomial

fZ)=AZ* +BZ2 —Z + C (B1)
has two real, positive roots.
Consider the quadratic
g(Z)y= AZ* + BZ — 1. (B2)
This has one positive root at Z = Z,, given by
1
Z, = —[(B*+ 44) — B
1= [(B® + 44) ]
: (B3)

(B* + 44 + B’
Moreover, g(0) = —1. It follows that Zg(Z) is
negative between Z =0 and Z = Z; (see Fig. 2).
Hence, f(Z) will have two real, positive roots if C is
less than the maximum value of |Zg(Z)|. This condi-
tion will be expressed in a strengthened form, for
simplicity.
Let
Z, = — 1 <Z.
(B + 44)t
Since the chord (0, — 1) to (Z,, 0) lies wholly inside the
parabola, it follows a fortiori that the line segment
0, =1) to (Z,,0) lies inside it (see Fig. 2). The
midpoint of this segment is (Z,, —}), where

(B4)

1
Zy=132| = ———— . B5
o= A= e ) (BS)
Hence,
g(Zy) < —4, (B6)
and
1
Z) < C~ —-—. (B7)
/() 4B + 44)F
A
- Z

FiG. 2. Cubic polynomial for the N/D system.
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Hence, a sufficient condition for two positive roots is
1
<—7. (B8)
4(B® + 44)
When this condition is satisfied, /(Z,) will be negative.
APPENDIX C
The generating series for the Legendre polynomials

fw’Pl(x) =(1 —2xw + w?)? (CDH
=0

certainly converges absolutely and uniformly with

respect to x, if x and o are real numbers satisfying
x2>1,

0<ow< 1 (€2)

x4+ (2 + D

DAVID ATKINSON

Hence,

§(21 +1) f wdx(x + 1)~e+bp (x)
1=0 1

_( [(x + D* — 1] dx
U (x4 DI (x + D%+ 1) + 1F

, (C3)

where the interchange in order of sum and integral
is permissible. It can be shown that this integral is
less than %. Hence,

L @
S+ 1) f dx(x + )PP (x) < 3 (CH)
1=0 1

for any L.
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The necessary and sufficient conditions that a Ricci tensor should represent the energy tensor of a
complex scalar field are given for the general non-null case. The complexion gradient of the field is
determined only to within a sign by the Ricci tensor, unlike the case of the electromagnetic problem.
The physical content of a field which corresponds to massless *pions” is expressed entirely in geometric

terms within the Rainich scheme.

I. INTRODUCTION

N a previous paper,! we have found the necessary
and sufficient conditions that a Ricci tensor should
algebraically represent the energy tensor of a complex
scalar field. In the present analysis, we want to solve
the problem of specifying the necessary and sufficient
differential equations which a Ricci tensor must
fulfill in order for it to represent the energy tensor of
the complex scalar field.

The notation and aims of the present analysis have
been explained in previous work,! and we will only
briefly recapitulate the essential features of the alge-
braic problem in the next section.

It will be seen that the present problem is analogous
to the electromagnetic problem solved by Rainich?
with an essential difference. The complexion gradient?
of the complex scalar field is determined by the Ricci
tensor only to within a sign.

We present the analysis only for the general field,
ignoring the nuil and degenerate special cases men-
tioned in the algebraic analysis." The reason for
doing so is to avoid unnecessary formal complications.
The special cases may be examined separately, as is
most profitably done in the electromagnetic problem.?

II. REVIEW OF ALGEBRAIC PROBLEM

In the previous paper,! we displayed certain alge-
braic conditions which ensured that the Ricci tensor
be of the form

R, = A4, + B,B,, (1

where 4, and B, are independent vector fields. We
also noted that R,, was unchanged by the duality
rotations,

(2
B,—~ B, = —A,sin 8 + B, cos 6. 3

A,—~ A, = A,cos 6+ B,sin 6,

1 R. Penney, J. Math. Phys. 7, 479 (1966).
2 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).
3 1. A. Wheeler, Geometrodynamics (Academic Press Inc., New

York, 1962), p. 225.

Indeed, the duality invariance of R, shows that we
may pick the vector fields in a special way by fixing
the value of the complexion angle arbitrarily at some
point in space~time. Thus, consider the two scalars

I, = A°A, — B°B,, (4)

I, = 24°B,, (5)

which under duality rotations transform as follows:
I; =1, cos 26 + I, sin 26, (6)

I; = —1,sin 26 + I, cos 26. (7)

Without affecting the Ricci tensor, then, we may
pick the vector fields in some special way by choosing,
for example,

2A"B; =1I; = 0. 8

The general vector fields which are determined by
the algebraic restrictions on R,, may then be obtained
from the extremal vector fields A, and B, by an
arbitrary duality rotation.

The point is that we may assume that 4, and B, are
orthogonal. We lose no information by our assump-
tion, since the general vector field solutions of the
algebraic problem are obtained by duality rotation.
Thus, we drop the prime henceforth, and assume
A, and B, are orthogonal.

We can express our extremal vector fields in terms
of the Ricci tensor directly. In so doing, we need only
make the (arbitrary) choice of taking 4, to be space-
like and B, to be timelike. That is, we specify

A*4,>0, B*B,<0. ©)]
If we define the tensor S,; by
S.p = 2R7R,5 — RR 4, (10)

then our extremal vector fields are given by the

expressions,
24,45 = Rys + SIS,

2B,B; = R,y — 571S,,.

(11)
(12)
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In the expressions, S is the trace of S,5, and the
positive square root is intended. The important point
is that quadratic expressions in either vector field are
expressible solely in terms of the Ricci tensor.

It is important to note that the Ricci tensor is also
invariant under duality reflections. That is, if we
change the sign of 4, or B, or both, R, is unaffected.
It follows that any expression which is not invariant
under such duality reflections cannot be written in
terms of the Ricci tensor.

III. DIFFERENTIAL PROPERTIES

If one has solved the algebraic problem for the
Ricci tensor, one has deduced that R,, may be written
in terms of the two independent vector fields. If we
continue to denote by 4, and B, the extremal vectors
which are orthogonal, then the algebraic characteri-
zation of R,, tells us only that

R,, = A,A, + B,B;, (13)

where the general vectors 4, , B, are obtainable by an
arbitrary duality rotation from the extremal fields.

As we have previously remarked,! in order for
R,, to represent the complex scalar field, we must
have the general vectors obey

Ay — Ay, =0, (14)
B,,,—B,,=0, (15)
Al =0, (16)
B = 0. (17)

By inserting the expressions given in Sec. II for the
general fields in terms of the extremal fields, we see
that we must have:

Acip— Aga+ BBy — BB, =0,  (I8)
Byis~ Byla— Ay + A, =0,  (19)
Al + BOI* =0, (20)
Bl — 4,6 = 0. 1)

The object is now to interpret the above equations as
restrictions on the Ricci tensor. The point is that we
want to show that, if we impose certain differential
equations, which R,, must fulfill, we must thereby
imply that the extremal fields 4, and B, and the
complexion gradient, ),, obey the above set of
differential equations.

At this point, then, we want to find a set of equations
which contain only the Ricci tensor, but which
are equivalent to the restrictions on the extremal
fields and complexion gradient. In so doing, we are

R. PENNEY

examining the general case; we will assume that

(A°A,)X(B*B;)* > 0. (22)

It happens that the analysis is quite tedious, and it
is expedient to adopt many useful notations. We
define the following:

Agip— Agla = Ay Al =a, (23)
BalB"'BﬁlaEBaﬂ’ BaIaEb’ (24)
Bdy=a,, 0,=0,, (25)
AB,=b,, Ad, =A% BB, =B (26)

Our conditions involving 6, are then as follows,
with the new notation,

Ay + B9y — By, =0, (18)
By — A0, + A, =0, (19)
a+ B =0, (20)
b— A" = 0. (21)

With little effort, using the orthogonality of the
extremal fields, we may rewrite our conditions,
separating the information concerning 6, and the
restrictions on the extremal fields. We obtain the
equivalent set:

24°B%; = B[by + bAy] — A%lay + aBs), (27)

0 = B%[b, + bA,] + A*[ag + aByl, (28)
A*B,p = Aby, — Agh,, 29)
B?4,, = B,ag — Bya,, (30)

by simple algebra. The latter set of equations are not
all independent, however, as a count of equations
shows.

To proceed in a reasonable manner, we need to
realize that quadratic combinations of either vector
field may be expressed in terms of the Ricci tensor.
Thus we find it useful to define the following tensors
which are expressible solely in terms of the Ricci
tensor:

Ry = A Ap, Gy = A Ap — %Azg,ﬂ,
Rg.s = BBy, Gp.y = BBy — $B%,4,

(31
(32)
where 4 and B are labels, and not tensor indices.

IV. RESTRICTIONS ON EXTREMAL FIELDS

In this section, we want to write the differential
conditions which do not involve 8, as conditions on the
Ricci tensor. First of all, we consider Egs. (29)
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and (30). We use the following identities:
R;‘iﬂ(GAdﬂ I y - G‘,la.', I ﬂ) = AzApApy, (33a)
R‘Ilj’p(Gb’aﬁ 1y — GBay | p) = BzBpoya (33b)

which are true solely because of the vector composition
of the ingredient tensors.
We also use the identities:

RER*(Gpuo |y — Gpay| o) = B'A’B'b,, (34a)
RﬁrR;?a(GAwd fv — GAu)v | a) = AzB}'Arav H (34b)

which, again, are true without assuming any prop-
erties for the vectors involved.

Using the mentioned identities, we may immediately
write Eqs. (29) and (30) in terms of the Ricci tensor.
For brevity, we examine only Eq. (29). Multiplying
Eq. (29) by B, we have

A®B,B,, = B,(Aby — Ayb,) (35)

from which the original equation is retrievable by
contraction with B?. We then use Egs. (33b) and
(34a) and obtain directly the condition

RAR&BP(GBaﬁ Iy — GBay | ﬁ)
= Rgp[Rzlﬂ(GBam ly — GBmy | a-)
— R%(Gposi g — Gpop1a)l (36)

Similarly, the transcription of Eq. (30) results in an
equation exactly analogous to Eq. (36) with the
labels 4 and B interchanged. We thus have accom-
plished our aim of writing Eqs. (29) and (30) in terms
of the Ricci tensor, without losing any information.

To complete the aim of the present section, we
want to write Eq. (28) solely in terms of the Ricci
tensor. Unfortunately, to do so, we must follow a
circuitous route. Thus, it is worthwhile to outline the
method of attack. We will return to the Eqgs. (28)-(30),
and realize that (29) and (30) have been paraphrased
in terms of the Ricci tensor. We then show by com-
bining the information in our set of equations that the
Bianchi identities are therein contained. Conversely,
since the Bianchi identities are trivially satisfied by
any Ricci tensor, we deduce certain identities which
must be fulfilled by the external fields. We then use
the latter identities to write Eq. (28) in a form suitable
for treatment.

If we examine Eq. {28), and contract first with 4*
and then with B?, we obtain the deductions

B’b = —A¥q,, 37N
A*a = —B’b,, (38)
which we proceed to use in Egs. (29) and (30). We
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multiply Eq. (29) by B2B* and Eq. (30) by 424% and
add the resulting equations, obtaining the relation

A'B (BB, + A*Ay) = A’BXad; + bBy), (39)

which we simplify because A%B? does not vanish.
Equation (39) is then easily written in the form

(Raﬁ - %Rgaﬂ)la =0 (40)

which are the Bianchi identities. Conversely, since the
Ricci tensor identically obeys the Bianchi identities,
and since Eqs. (29) and (30) are deductions from
conditions on the Ricci tensor, we may deduce Eqgs.
(37) and (38) from properties of the Ricci tensor.
Indeed, the Bianchi identities alone imply the scalar
conditions of Egs. (37) and (38).

The upshot is that we have lost no information in
writing Eq. (28) in the following form:

0 = {B%, — A,4%a,} + {A%a; — B,B’b,}, (41)

which is well suited to analysis. Proceeding, we
directly obtain the form

0 = (B’gy — ByB“)b,, + (A’gy — AgA®)a, (42)

by elementary manipulation of dummy indices.

To aid our analysis, we use the following relations,
which assume no special properties of the extremal
fields except orthogonality:

A'BG 435)0 — Gaiw| sl = A%a,,, (43a)
B*A%Gpis|0 — Gpiw|s) = Bb,,. (43b)

If we then define the combinations
F = A Ay — A8y, (44a)
Fpp = BBy — B’g,, (44b)

and multiply Eq. (42) by A2B2B’A°, we read as
follows:

0= AzFﬁﬁRT/}RZf(Gmo jo — G | )
+ B F§RERT (G iis) 0 = Gupw 10 (45)

This latter equation is expressed solely in terms of
the Ricci tensor since it contains only quadratic
combinations of either vector field, and the extremal
vector fields are expressed solely in terms of the Ricci
tensor, as we saw previously. Of course, we could
write Eq. (45) explicitly in terms of R,, by using the
expressions for the extremal fields, but it is not neces-
sary to do so, and would lead to extremely complicated
expressions. :

We have accomplished our purpose of writing the
restrictions on the extremal fields solely in terms of
the Ricci tensor. If we had a Ricci tensor which obeyed
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the algebraic conditions previously displayed,! we
would find that it would have to obey the restrictions
given by Eqs. (36) and (45) [and the equation obtained
from (36) by interchanged labels 4 and B] in order to
represent the complex scalar field. Conversely, if the
Ricci tensor obeyed the mentioned restrictions, then
we would be able to deduce that the extremal fields,
of which R,, was composed, obeyed the Eqgs. (28)—(30).

V. THE COMPLEXION GRADIENT

We wish to consider the expression for the com-
plexion gradient, which is

242B%0, = B%[b, + bA,] — A%[a; + aB,]. (27)
B B B B B

Before doing any manipulations, it is important to
note that 6, cannot be expressed solely in terms of the
Ricci tensor. Indeed, if we change the sign of one of
the extremal fields by a duality reflection, then the
complexion gradient changes sign according to the
above relation. Therefore, 6, cannot be formed from
the Ricci tensor and its derivatives, since the Ricci
tensor is invariant under duality reflections.

In this respect, the complexion gradient is different
in character from that which arises in the electro-
magnetism case.? The essential difference in character
between the complex scalar field and the electro-
magnetic field is that the extremal fields 4, and B, are
truly independent vector fields, whereas the Maxwell
field tensor and its dual are linearly related.?

We wish to determine to what extent the complexion
gradient is determined by the Ricci tensor. To do so,
we use again the relations,

B = —Alay, (37)
A’a = —B’b, (38)
and elementary manipulations to obtain
2A4°B*, = Pfgb, — P4sa, . (46)
Here we have defined the tensors;
Pyop = AuAs + A8, (47a)
Ppos = BBy + B, (47b)

which are expressible solely in terms of the Ricci
tensor.

We again use the relations given by Eq. (43a) and
(43b), multiply by 4%B? and obtain,

2(A°B?)*0, = A*B°Q,5, (48)
where the tensor Q,,, is expressible solely in terms of
the Ricci tensor and is explicitly,

Qzaﬂ = RAP](;IJ(GBM jo ™ Gpisw | 2
— RpPip(Giisi0 — Guins)- (49)
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To complete our analysis, we form the tensor
product of 6, with 6, and have, finally, the expression
040, = H,,, (50)
where the very complicated symmetric tensor H,, is
defined by the expression,

[2(A232)2]2Hﬁ1 = RQPR%Qwﬂme, (51

which could be simplified somewhat by using the
algebraic properties of the Ricci tensor.

The important point is, however, that the com-
plexion gradient 6, is only implicitly expressible in
terms of the Ricci tensor. H,; is expressible directly
in terms of the Ricci tensor and allows one to deter-
mine 6, to within a sign.

Our amalysis is not complete unless we specify
conditions on the tensor H,, which ensure that it is
always expressible in terms of a vector product of
scalar gradients which play the role of the complexion
gradient.

However, fortunately, it has been shown? that the
necessary and sufficient conditions which a symmetric
tensor must obey in order to be equivalent to a vector
product of scalar gradients are as follows:

H"H,, = HH, (52a)

Hy, > 0, (52b)

H <0, (52¢)

H:[(Hrzﬂ - %Hgaﬂ)h! - (Hay - %Hgay)m] = 09 (52d)

and therefore, these are the conditions which are
necessary and sufficient to allow us to determine the
complexion gradient at any point to within a sign.

VI. AMBIGUITY OF THE COMPLEXION

The fact that the complexion gradient is always
ambiguous to within a sign at any point where the
Ricci tensor is known is not a feature which spoils the
Rainich geometrization scheme. Indeed, the ambiguity
is of the same character as that which occurs in the
Rainich treatment of the electromagnetic field.

If we define the complexion® of the complex scalar
field as is done for the Maxwell field, viz.,

€T
6 Ef 0y dx? + 0,, (53)
0
where 6, is some arbitrary value at a selected point,
and we integrate to any arbitrary point x*, then the
ambiguity of sign for the complexion gradient results
in an ambiguity of the complexion.

¢ R. Penney, J. Math. Phys. 6, 1029 (1965).
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However, we must recall that the extremal fields
A, and B, are themselves ambiguous to within a sign,
just as for the Maxwell field. Similarly, the value of
By is ambiguous to within a sign.

We have so far shown that, if a Ricci tensor is to
represent a complex scalar field, it is necessary that the
equations of the preceding sections be fulfilled.

Conversely, if the mentioned algebraic and differ-
ential equations are obeyed by the Ricci tensor, those
conditions are sufficient to determine the complex
scalar field. To see this, realize that the algebraic
conditions given in a previous paper' allow us to
determine the vector fields to within a duality rotation
and a sign. We obtain from the algebra the local
values of the vector fields,

(54a)
(54b)

where €, €p are the sign ambiguities of the extremal
fields, and 6 is an arbitrary angle.

The differential conditions, which were expressed
in terms of H,; above, allow one to determine the
complexion gradient to within a sign. As a conse-
quence, we obtain the complexion angle throughout
space-time to be

A, = e4A,c08 0 + exB, sin 0,

B, = —e A, sin 6 + ezB, cos 0,

(55)

where we denote by €, the sign ambiguity of the
integral of the complexion gradient. At this point,
however, we must realize that the ambiguity of the
complexion angle is reduced by the notion of con-
tinuity. If 6 has the value 6, at some point, then its
nearby values must be only infinitesimally different.
Thus, only a global ambiguity of the form ¢, remains.
That is, starting from some standard point at which
the complexion angle is 6,, any particular observer
will choose a sign for 6, and will maintain that choice
on moving from the standard point. Therefore,
depending upon the original choice of sign for 6,,
only two global situations will arise, which is implied
by Eq. (50).

The important point is that we can instruct any
geometer as to which sign to adopt for the various
choices mentioned. Whether or not our instructions
are physically realistic is a separate problem which
can only be answered by interpretations which lie
outside the realm of classical geometrodynamics.

Indeed, if we realize that, within the context of
quantum field theory, the vector fields 4, and B,
represent the gradients of the field amplitudes for the
mt or =~ mesons; we will appreciate that the sign of

6 = €, 101 + 6,
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either extremal field is irrelevant. Likewise, the
possibility of two global situations for the complexion
angle as a function of position may be viewed as an
expression of the fact that a given geometer may
make a choice of which extremal field is to represent
#mt and which is to represent =~ Of course, in the
absence of interactions, such a choice is a matter of
definition.

The conclusion must be that the ambiguities of
signs we have noted can only be resolved by con-
ventions and definitions. To appraise whether such
conventions are consistent, one must consider the
problem of geometrizing interacting fields.

For our present purposes, we can resolve the
ambiguities arbitrarily by instructing a geometer to
adopt the positive sign of the square-root expressions
which arise in calculating the extremal fields or the
complexion gradient. That is, in calculating either of
the extremal fields, or the complexion gradient, the
geometer necessarily must perform the operation of
taking the square root of a component of a tensor
formed from the Ricci tensor. For example, in calcu-
lating 6, , the geometer needs to decide whether to use

0o = +(2Hy)* (56)

or the opposite sign. If we adopt the convention of
instructing the geometer always to use the positive
sign where such choices are to be made, then no
ambiguity remains.

VII. CONCLUSIONS

We have shown that the complex scalar field, which
may loosely be considered as representing massless
charged pions, can be completely geometrized in the
general case. We have not considered the various null
or degenerate cases which may arise. We have not
shown that our conventions for resolving the am-
biguities of sign which arise in the problem are
physically reasonable or consistent with the inter-
pretation of the complex scalar field.

The necessary and sufficient conditions that a
Ricci tensor must fulfill to represent the energy
tensor of a complex scalar field are given by Eqgs. (36)
(and its relabeled form), (45), and (52), together with
the algebraic conditions previously derived.! In
addition, one must adopt the convention that positive
square roots are implied wherever a choice is to be
made in the analysis.

It may be that the null and degenerate special cases
of the complex scalar field may be similarly treated,
but that remains to be shown.
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Explicit and complete junction conditions across internal boundaries are found for the Ricci rotation
coefficients and Riemann tensor components in an arbitrary reference tetrad frame; the reference frame
may be discontinuous at the boundary. The allowed jumps in inertial and gravitational field dyadics are
given for the case of normal boundary motion. When the reference frame is chosen to be comoving with
the matter distribution on either side of the boundary, the junction conditions include such immediately
physical results as the relativistic Rankine-Hugoniot relations. It is expected that use of such comoving
reference frames will be important in finding discontinuous exact solutions.

I. INTRODUCTION

DMISSIBLE coordinates yx*, in the Class C?
differentiable manifold of space-time, have been
carefully defined by Lichnerowicz.! In such coordinate
systems, he postulates (a) that the metric tensor
8.(x") is continuous of Class C', and further (b)
that the first partials g,, , (or, equivalently, the I'2)
are piecewise continuous of Class C2 Postulate (a)
evidently ensures the existence of interval invariants
and of parallel transport in every neighborhood. In
the terminology of Synge,? it ensures elementary flat-
ness. It ensures the existence of a second fundamental
form for any imbedded 3-surface X, and ensures the
possibility of construction of Gaussian coordinates
based on X. O’Brien and Synge® have shown how
postulate (b) leads (at internal “boundaries” such as
X) to physicaily interpretable junction requirements
on components of the Riemann tensor. In particular,
for those components identified by the field equations
as describing energy and momentum density and
flux, the junction conditions are the relativistic
Rankine-Hugoniot relations.2* They ensure that no
sources of energy and momentum exist as singular
distributions on internal boundaries. Similar local
physical interpretations, as junction conditions, may
in fact be made of all the implications of postulate (b).
The introduction and actual use of admissible
coordinates in formulating general relativistic models
is usually inconvenient, especially at boundaries
across which the postulated physical configuration
changes. It is in practice much more appropriate to
use different, intrinsically defined, anholonomic ref-
erence frames on either side of such boundaries. What

* This work was sponsored by the National Aeronautics and
Space Administration under Contract No. NAS7-100.

1’A. Lichnerowicz, Théories Relativistes de la Gravitation et de
L’Electromagnétisme (Masson & Cie, Paris, 1955).

2J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960).

3 S. O’Brien and J. L. Synge, “‘Jump Conditions at Discontinuities
In General Relativity,” Commun. Dublin Inst. Adv. Stud., A, 9
(1953).

4 A. H. Taub, Phys. Rev. 74, 328 (1948).

is then needed is a complete formulation of all the
junction conditions required to be imposed, conditions
which together are of course equivalent to the
Lichnerowicz postulates. The lack of such an explicit
formulation may be a contributory reason for the
paucity of exact general relativistic solutions having
physical internal discontinuities.

The Lichnerowicz postulate (a) of continuity of
metric structure clearly allows us to have present
in the space-time, a Class C° tetrad frame: a set
of four continuous vector fields pA” (labeled by R =
0, 1, 2, 3) such that everywhere pA%g,, (A’ = nrg,
or pA*nBSGAY = g#v, where the npg and the
reciprocal n*S are constants (and so indeed contin-
uous of Class C*!). In a tetrad formulation of
general relativity, the g,,, components of the
metric tensor in the holonomic admissible coordinate
frame, are replaced by the #pg, anholonomic com-
ponents. The ,A* make explicit the local metric, its
signature, and the local meaning of parallelness. In
the following, we usually specialize to an orthonormal
frame, in which #%,q = %S =diag (—1,1,1,1).
Postulate (b) allows the fields ;,A* to be taken also
piccewise continuous and covariantly differentiable
of Class C3. Across an internal boundary, a 3-surface
X, we may then only allow jumps in the first, and
higher, derivatives of the pA* normal to X.

We will call the continuous pA* the standard ortho-
normal tetrad frame. We go on in Sec. I, to consider
also a piecewise C? continuous reference tetrad frame,
the vectors ,.2* of which again satisfy the orthonormal-
ity conditions, but are not C°, being related across %
by arbitrary orthogonal transformation. The desired
physical junction conditions then result from the
expression, in this second, discontinuous, tetrad frame,
of the tangential continuity requirements for the
standard fields pA*.

In Sec. 111 we consider in detail the specialized case
when the surface of discontinuity separates two
reference frames whose relative motion is normal to it;
this case promises to be of considerable practical use
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in space-times with symmetries. We now can con-
veniently put the junction conditions into dyadic
notation®%; there are 29 relations across X between
the physical 3-vectors and dyadics of the inertial-
reference fields a, w, , S (acceleration, triad, rotation,
vorticity, and rate-of-strain), the stress, momentum
density and energy density fields T, t, p, the gravita-
tional fields A and B,-and the orthonormal 3-vectors
i, ¥, W and shock speed v describing X itself. The
junction conditions found for a and & are closely
analogous to those for E and B in electromagnetism.
Those for T, t, and p are the relativistic Rankine-
Hugoniot relations for general media; for comoving
dyadic frames in perfect fluids, they reduce to the
known relations between densities and pressures on
either side of a shock.* The junction conditions for
the traceless dyadics A and B are again analogous to
the electromagnetic case, although now the source
densities of the field are also involved.

In Sec. IV we consider the exceptional case which
occurs when X is null. Inter alia, we of course find in
empty space that only type N jumps in A and B are
allowed. Lastly, we give in Sec. V a discussion of
further relations resulting from postulate (a), which
must be satisfied when three or more surfaces X join
in a 2-manifold.

The results of this paper will in the future be applied

to some simple physical cases with spherical sym-

metry.” When the equations of Sec. I1I are specialized
to this case, only seven dyadic junction conditions
remain, and the use of intrinsic comoving reference
frames in each of various physical regions of a single
nonstatic space—time is analytically reasonable.

II. TETRAD JUNCTION CONDITIONS

The standard tetrad fields ;; A* are continuous across
2 and are continuous and thrice differentiable parallel
to 2. The first implication of this is that the first
tangential derivatives pA% PJ are continuous across
%, P] being the projection operator into 2. Since we
do not wish explicitly to use admissible holonomic
coordinates, we “strangle” these expressions with the
continuous standard tetrad fields to obtain the scalar
conditions
RAu;o'P‘: SAMTAVC' (l)

By € we mean continuous across Z. Taking account
of the projection operators, and the orthonormality

5 F. B. Estabrook and H.D. Wahlquist, J. Math. Phys. 5,1629
(1964).

¢ H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 7, 894
(1966).

7 H. D. Wahlquist and F. B. Estabrook, Phys. Rev. 156, 1359
(1967).
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of the standard tetrad, it may be seen that there are
18 relations in Eq. (1).

Similarly the second and third tangential derivatives
of rA* are continuous: [,A, P?] P;, etc. We will
not write most of these, as they are guaranteed as
soon as one has obtained sufficiently differentiable
functions conforming to Eq. (1). However, some
combinations of the second partials of a tetrad frame
are dignified by new symbols—viz., those which co-
variantly describe the underlying geometry and do
not refer to the inertial structure of the specific frame.
These are the Riemann tensor components, formed
from just the antisymmetrized second derivatives of
any tetrad frame. They have, in Einstein theory,
unique physical (dynamical) significance. In actual
problems with internal boundaries, it is the behavior
of the Riemann components which may well be
specified ab initio, and the first partials (Ricci rota-
tion coefficients) and metric are found by integration.
In short, in addition to Eq. (1) we are only interested
in the junction conditions for the scalars formed from
the antisymmetrized second derivatives

{RAu;[ar]P:P; + RA#:GP;v;IfIP/:]}SAuTAVPApC' ()

There are 14 scalar relations in Eq. (2), which we
next find in more elegant form.

Without any loss of generality in describing the
continuity properties of our space-time, we may take
the standard tetrad frame ,A* to have one of its
vectors, viz., ,A*, aligned normal to the internal
boundary 2. If ,A* is spacelike, 2 is a timelike 3-
surface which appears in any local spatial reference
frame as a moving 2-surface of discontinuity, or
shock front. If ,A* is timelike, X is spacelike, and the
2-surface of discontinuity appears to be moving at a
speed greater than that of light. (The case when X
is a null 3-surface will be considered in Sec. 1V.) The
projection tensor is then

Pl = gl — AT, (3)

The Bianchi differential identities (which will in-
volve third partials of any set of tetrad vectors) are
expressed in conservation form by use of the double-
dual Riemann tensor: *R**?’. = 0. By considering a
Gauss theorem on a limiting pill box including X,
knowing that the *R***" and ¢A,, can only have
finite jumps across X, we immediately find the scalar
requirements

AN AT ¥R AT, (4)

Considering the symmetries of the Riemann tensor,
there are fourteen conditions in Eq. (4). Introducing
the Ricci commutation relation into Eq. (2) and

pvor2
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taking account of the continuity of the quantities in
Eq. (1), one shows that they are precisely the same
conditions.

As explained in the introduction, we now introduce
a reference orthonormal tetrad frame ,1*, discontin-
uous across X by an orthogonal rotation. The junction
conditions across X are written in this physical refer-
ence frame; Eqgs. (1) and (4) become, respectively,

(RAL: + T AN (A — 2AS7I’T2)SAMC )

(6)

The Iy, are the Ricci rotation coefficients of the
reference tetrad frame, in the notation of Ref. 5.

Regarded as junction conditions on the physical
variables I',, and *R ., the 32 relations (5) and (6)
are still in part implicit, in that they involve the refer-
ence tetrad components of the ‘‘standard” tetrad
fields, pA". These now need only to be known on,
and differentiated in, X (but given twice—in the
reference tetrad frame as we approach from either
side). The rA” should now be regarded as just orthog-
onal transformation matrices taking the ,A* tetrad on
either side into a convenient “standard” orientation
rA* = A" A" implicitly defined on . The tetrad
components of a vector V* change according to
VE = EA V' The 4 x 4 matrix A = pA" satisfies
AnAT = v, and so would have in general 6 param-
eters on each side of X. But we have taken ,A” to be
the unit normal to X. This means that, regarding X as
given, on either side we still have in the transformation
matrix 3 a priori unknown parameters, functions of
position on X; also that ,A* itself, being 3-normal,
must satisfy ,A, »A, ., = O:

€m“‘;t2/\r[2j\s,t + Ft'?SZAq] = 0

and
RArSAsTAt *Rmst 2A1’ C.

)

HI. NORMAL BOUNDARY MOTION

In most practical problems the 32 junction relations,
Eqgs. (5) and (6), are simplified by symmetries. In
particular, we wish now to consider how these rela-
tions reduce in what we might call the case of normal
boundary motion. Seen in space-time, this is when
the timelike reference vectors ¢4* on either side of X
are coplanar with ,A¥, the normal to X. The “reference
fluid” 44* on either side of X is seen, in the local
spatial reference frame on the other side of X, to be
moving with 3-velocity normal to the instantaneous
bounding 2-surface, or shock front. It is clear, for
example, that this will be the situation in problems
with plane, spherical, or cylindrical symmetry, if one
naturally adopts, on both sides of a plane, spherical
or cylindrical symmetrical boundary, timelike refer-

F. ESTABROOK AND H. WAHLQUIST

ence vector congruences which themselves reflect the
same symmetry.

So we now choose for further discussion the follow-
ing particular form for the orthogonal transformation
matrices pA”:

R =
y  yu¥ 0
0 @ 1
AT
B yo ¥ 2 (8)
0 w 3
r=0,1,23,

where y = (1 — v?)~% and @, 9, W are an orthonormal
triad. We use a 3-vector symbolism for spacelike
indices r = 1,2, 3—this is the usual dyadic convention.
We note that ®A, applied to the unit timelike vector
I"=(1,0,0,0) gives standard components /B =
(y,0, —yv, 0) while a unit spacelike vector (0, V)
becomes (—yv, 0, y, 0). Further (0, i) becomes
(0, 1,0,0); (0, W) becomes (0,0, 0, 1). So Eq. (8) is
explicitly a 4-screw? with one of its canonical 2-flats
in Z. As seen in the reference tetrad frame, the transi-
tion to the “standard” frame is a Lorentz transforma-
tion in the ¥ direction, combined with a pure rotation
about that direction. The ¢ direction is the instan-
taneous normal to the shock front, and v is the normal
speed of that front. The 3-vectors i and W are in the
instantaneous front.

The transformation from the standard frame to
the reference frame on the other side of Z, will be a
4-screw with the same canonical 2-flats. The shock
speed v is, of course, different on either side of the
front. The 3-vector triads @, ¥, W are to be physically
identified across the front—but this is not to say that
the components of these unit vectors with respect to the
spatial reference vectors are unchanged in crossing the
front.

Substituting Eq. (8) into Eq. (7), we find on either
side of the boundary

Qv — 1)(S2 — ¥ .29
+¥9x W+ Vo+S-¥40val=0 (9)
and

[V x¥+2082] =0, (10)

Derivatives comoving in the shock front are denoted
by a prime: ¢’ = p(¢ + v¥-V¢), & = y(l’i+w x @+
v¥ - Vi), etc. The prime operation is the covariant
absolute differentiation operation in X, in the ,A*
direction. It has the same dyadic form on either side
of X, a form which is to be physically identified
across X.
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Most of the scalar continuity conditions can now
be conveniently written as conditions of continuity of
tangential components (C ;) or of normal components
(Cy) of 3-vectors [and symmetric dyadics]. In the
case C, we will understand that when the vectors
[dyadics] are operated on by @i or W- [by dii:, Ww:
or (4w + Wii):] the resulting scalars are C. In the case
C that when the vectors [dyadics] are operated on
by ¥ [by ¥¥:] the resulting scalars are C. After
each continuity symbol, C, or Cy, we will also
indicate the number of such scalar conditions implied.

Using Eqs. (9) and (10), we find 15 conditions
remaining in Eq. (5): first

$.V x (@W + %) C4(2),
@ + Wity C (1)

(11)
(12)

These are in fact the only continuity relations of our
set which explicitly involve the reference vector orienta-
tion in the front; this orientation is described by the
dyadic W + Wii and (like the vectors @i and W them-
selves) may be physically identified as continuous
across the front. For simple situations Eqgs. (11) and
(12) will be trivially satisfied.

»(V9 + 3V) + 250SC ,(3). (13)

These are continuity requirements for the instan-
taneous second fundamental form of the 2-front, as
seen from either side.

yo(V9 + V) + 295C 1 (3). (14)

While again involving the second fundamental form,
this is best regarded as a continuity requirement
on S, the rate-of-strain dyadic. S, together with a
and £2, describes the inertial field in the explicitly
physical dyadic formalism. These latter vectors have
tangential and normal continuity requirements, re-
spectively, very analogous to those of classical electro-
magnetism:

yIRC (D), 15
a— 20¥ x  — Y2V, (2). (16)
Finally, the scalar shock speed v must satisfy
Vo 4+ (S — & x 1) - C 1 (2), (7
Yo' 4+ ya¥ 4+ p¥.S-9C, (18)

This last scalar condition may also be regarded as a
normal continuity condition on a. It may easily be
verified that the nine conditions in Egs. (11), (12), (14),
(15), and (16) ensure the uniqueness of the intrinsic
metric structure of X, as described by the nine Ricci
rotation coefficients of the triad (A*, ; A¥, 3A# , whilethe
six conditions in Eqgs. (13), (17), and (18) ensure the
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uniqueness of the six triad components of the second
fundamental form of X. This interpretation fails for
2 null.

The 14-junction requirements on the Riemann
components in Eq. (6) become

y2(p — - T-9) — 92(1 + 0?9 -tC,  (19)

—% T ¥ 4 y22p — 29208 « tC, (20)

P9 T + yotC (), @

BC (1), (22)

A— T4 §Tr T — 2p)IC x(1), (23)

y(A-¥ — v? x B-9H)T,(2), 24)

yWA ¥ =9 xB-% —0T-¥ —6)Cp(2), (29
292 (2A + 9+ A-90)

+ (22— DB x ¥ — ¥ x BYC,(2), (26)

22 —1DCA+¥-A9) 4+ 2092(Bx? — ¥ xB)
+2T —TrTI4+ #.T-?ICL2). (27)

These junction conditions are rich in physical
implications when applied to specific cases. One
might, for example, have v the same on either side of
X, ov = 0, i.e., be using a continuous reference tetrad
frame. One then finds the allowed jumps in the dyadic
inertial fields from the first set, Eqs. (11)-(18),

(1 —99)- 05+ (| — #%) = 0, (28)
Ix S —Rx1).9=0, (29)
¥ x0(a— 200 x Q) =0, (30)

7.0Q =0, 31)
¥.0(a+ v?-5)=0. (32)

For 85 = 0 these necessitate da = 682 = 0, as one
might expect from the analogy of the inertial field to
electromagnetism. Similarly, the allowed jumps in the
matter and Riemann dyadics, from the second set,
Egs. (19)-(27), must satisfy
VO[A—T4+ KTrT—2p)l] —¥x5[B+tx1]=0,
(33)
vé[B —t x 1]
+ VI x6A+T+Hp—-2Tr D=0, (34)

(these include the energy-momentum conservation
laws 9+ 6T + vt = 0 and ¥ - 6t — vdp = 0).

It is, if anything, more physical (and convenient),
however, to use comoving reference frames on either
side of X, viz., take t = 0 everywhere in Eqs. (11)-
(27); then v on either side is a locally observed normal
shock speed. As just one of the results in this case, the
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four conservation laws in Eqs. (19)-(21) are now seen
as relativistic Rankine-Hugoniot relations. If we have
a perfect fluid, T = —pl, they precisely reduce to two
conditions given by Taub*:

y(p + p)C, (35)
YiHp + ppH)C. (36)

If quantities on the two sides of X are respectively
labeled + and —, an alternative form for these

last is
pi—pivh _ pE—pRt  pup — pipviv 37
1 -0 1 - 1 —v,0_

Analogous conditions are involved for the other
dyadic quantities. We expect this case of comoving
reference frames to be most useful in forming exact
solutions.

IV. NULL BOUNDARY

If the bounding 3-surface X is null, ,A* is in X,
and is in fact a geodesic null congruence—the bi-
characteristics. The transformation matrices to the
“standard” orientation are now taken to be

2y —29% Lt LR
B 0 @ .| o B
A = » IeA_ —_
r 1,71 1,71 n
1y iy v ¥
0 W 0 w

(38)
This is the most general form for normal boundary
motion. With respect to theinstantaneous orthonormal
axes of either frame, Z is a 2-surface moving with unit
speed in the direction of the normal ¥. Or, % appears
as an abreast two-dimensional flight of photons, whose
world lines are the bicharacteristics. » is a scalar not
fixed by this geometry, but which may be thought of
as the observed frequency of the photons, inasmuch
as it is only the ratio of such »’s on either side of X
which will appear in the following, and this ratio is
precisely the Doppler ratio for the two reference-
observer congruences involved.
Equations (9) and (10), satisfied by the normal ¥,
are now just
Q-Q-WH+Ix[p W +S-¥+al=0, (39
(40)

The prime operation now refers to the ,A* congruence;

e.g., ¢ =v($ + ¥- V), etc. The two sets of junction
relations are now

.V x (0% + W) C p(2),
(@W + Wity C (1),

V-VUx?+20-2=0.

(4D
(42)
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(Vi 4+ 9V 4 25)C (3), (43)
y (Vi + ¥V — 25)C,(3), (44)
r1IQC (1), (45)
a— ¥ xQ +85-7C,(2), (46)
iUy + (S — 8 x 1) T ,(2), 47
iy fva¥ 4905V, (48)

and
p+¥.T.-9C, (49)
$xT—Tx%Cp(2), (50)
v(T-¥ 4+ 6)Cp(2), (51)
rEF-T¥— p+2t-9C, (52)
rAF+TIxAx?—9xB+ BxNCH2), (53)
v(A — ¥ x B).¥C ,(2), 54)
yI(A+9xB) ¥ —T-%+t]JCr(2), (55
F-A 7+ 3p+TrNHC, (56)
$-B-9C. (57

1t is characteristic of the Einstein theory how the
last set has reduced in this case of a null boundary.
We note that now six equations, Egs. (49)-(52),
involve only the stress, momentum density, and energy
density T, t, p, respectively. A separation of these six
conditions into continuity sets for a 3-metric and a
second fundamental form is not appropriate.

If we consider a continuous reference frame, so that
dv = 0, we find in general that the allowed jumps in
the physical components again must satisfy Egs.
(28)-(34); we merely have here the case v = 1. If the
matter tensor T, is characteristic of a vacuum electro-
magnetic field, the well-known relations 7% = 0 and
TST,, = tT,4T*g,,, which in dyadic notation read

T.T—tt=}(p?— 22 4+ T:T)I, (58)

T-t+ pt=0, 59)

combine with Eqs. (28)-(34) [v = 1] to require that

the jumps dA and 6B be a type N pure gravitational

radiation field with propagation direction ¥, and

further, that the jumps 6T, dt, and dp are in fact a

null electromagnetic radiation field with the same
propagation vector:

0T = —dp¥¥, It = Jp¥. (60)
This was already shown by Roy and Radhakrishna.?

It is illuminating also to consider a converse argu-
ment; if we require that the jumps 0A, B be type N5:

SA =7 x 0B, OB = dA x ¥, (61)

88. R. Roy and L. Radhakrishna, Proc. Roy. Soc. (London)
A275, 245 (1963).
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FiG. 1. Three intersecting
internal boundaries.

Eqgs. (28)-(34) reduce to just Eq. (60). Any field which
is to propagate jointly and consistently with a pure
gravitational field, must satisfy these in a continuous
tetrad frame (covariantly, just 7,, = p,A, ,A,). We
repeat for emphasis, however, that the general normal
jump conditions, Eqs. (49)-(57), with » discontinuous
across 2, are more likely to be physically and
mathematically convenient.

V. INTERSECTING BOUNDARIES

If a space-time is divided into a number of regions,
by internal boundaries X,, Z,, - - - etc., the criterion
(a) of elemental flatness imposes additional conditions
on the transformation matrices pA”. We now must
label these last by boundary: FA", 3-A", etc.; we
further label them by & signs to denote on which side
of any given boundary is the reference tetrad being
rotated into standard position. The additional con-
ditions arise at those points where three or more X's
meet, and relate the A’s on them.

We illustrate this by considering just one example
of the sort of condition to be imposed, that when,
say, 3 2’s intersect in a 2-manifold (cf. Fig. 1), M.
Any tetrad, when subjected cyclically as shown to the
six transformation matrices on the three 2’s must be
finally unmoved, for M to consist of regular points of
the space-time manifold. That is, on M we must have
(in matrix notation)

1+A’l] I—ATY] 2+A7] 2_AT1] 3+A’l] S—AT =. (62)
For the simplest case, if the A’s are all of the normal
form, Eq. (8), and if further the orientation vectors
i and W are common to all the s, and so span M,
we are just compounding simple Lorentz rotation
matrices in the same 2-flat. Equation (62) reduces to a
single condition which is a sort of relative velocity
law for intersecting shocks:

L+ov,l—v L4011 —0, 1 +05, 1 —v5
l—wv, 4o 1 —wv 1+, 1 —v5 140,
(63)

APPENDIX: TANGENTIAL BOUNDARY
MOTION

We have also found a need for an explicit dyadic
set of junction conditions for the case of tangential
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boundary motion; seen in space-time, this is when
the timelike reference vectors ,4* on either side of
are normal to ,A*, i.e., lie in X. Such cases arise, e.g.,
when rotating solutions are to be matched across a
boundary which is itself a figure of rotation. As con-
trasted with Eq. (8), we now take

R =
¥, yu¥ 0
N A 1
o ) (64)
0, i 3
r=0,1,2,3;

¥ is the unit vector giving the direction of the (tan-
gential) relative velocity of the two reference frames.
The boundary speed v will without loss of generality
be taken numerically equal as seen from either side:

yo =yt (65)

¥ and i are in the instantaneous boundary 2-surface;
W is the normal to the boundary 2-surface, so

vT = —vt;

W (Ux®) =0, Wx[#+S*-%]=0 (66)
The 18 conditions of Eq. (5) are found to be
@ V#-ac, (67)
[¥ - V% + o(W + o x W)] - &C, (68)
[07 - V& + W + w x W] - aC, (69)
v(y2% 4+ a-9) + Vo +9.5.9C, (70)
Y+ a-v+ oW -Vo+9.5-9)C, (71)
i- [V + 9.5 — Q x ¥]C, (72)
(# —9.5%) x ¥C(2), (73)
@V — a) x $C(2), (74)
Wx{Vi+oS—Rxl)
+ 9@ + @ x 9) + v*Ha} x ¥T@), (75)
Wx (V8 + (S —x 1)
+ oM@ + w x ¥) + ofa} x $C@4). (76)
The 14 conditions of Eq. (6) are
?.B.9C, (17)
-Q-d+Ww-P-WwC, (78)
9-Q-9C, (79)
i-(P—Q)-wC, (80)
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i [vB*T + ¢ x P]-9C, (81)

- [B*T 4+ v? x P]. %C, (82)

9 % [Q — vf x B*]-9C(2), (83)

¥ x [1Q — ? x B*] - 9C(2), (84)

? x {v[B*T + v¥ x P]

— [Q — v? x B*] x 9} -WC(2), (85)
% % {[B*T + v¥ x P

— o[Q — v? x B*] x 9} - WC(2). (86)
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We have in these last used the dyadics Pand Q, B* and
s*:
P=A—T+3TrT —2p)l,
Q=A+T+ip—2TrT),
B*=B—~tx| S*=5—(Q— w)xl.

(87

The energy-momentum conservation laws contained
in the above are

?x T-wC(Q), (88)
(t + 9-T)- WC, (89)
(ot +9-T)-&C. (90)
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The partial-wave S-matrix element is examined as a function of potential strength g. It is shown to be
related to a series of Stieltjes in g. This is accomplished by looking at the zeros of the Jost function below
threshold and the zeros and poles of tan d, above threshold. The series of Stieltjes property is used to
establish the convergence of the Padé approximant method of summing the Born series.

I. INTRODUCTION

HE subject of potential scattering has proved to
be a useful testing ground for theoretical ideas. In
recent times, the investigations were stimulated by the
dispersion relation approach to scattering problems,
where the analytic properties of the scattering ampli-
tude as a function of energy, momentum transfer, and
angular momentum are of prime importance.!
Dispersion relation methods were principally
developed to cope with the problem of strong inter-
actions, where perturbation methods were inadequate.
A new and promising approach to the problem of
strong interactions consists of an approximate
summation of the perturbation expansion using the
Padé approximant.?? The method is intimately linked

* Supported by the National Research Council of Canada.

1 See, for example, R. Blankenbecler, M. L. Goldberger, N. N
Khuri, and S. B. Treiman, Ann. Phys. 10, 62 (1960). For a recent
review, see V. de Alfaro and T. Regge, Potential Scattering (North-
Holland Publishing Company, Amsterdam, 1965).

2 For a review of the Padé¢ and some of its applications, see G. A.
Baker, Jr., Advances in Theoretical Physics, K. A. Brueckner, Ed.
(Academic Press Inc., New York, 1965) p. 1, Vol. I.

3 Some recent applications of the Padé are: J. L. Gammel and
F. A. McDonald, Phys. Rev. 142, 1245 (1966); D. Masson, J. Math.
Phys. 8, 512 (1967); J. Nuttall, Phys. Rev. 157, 1312 (1967).

with the analytic properties in the strength g of the
interaction and is the motivation for our present
investigation.

One must be cautioned, however, in drawing
analogies between perturbation expansions in field
theory and potential scattering. Although one may
feel confident that bound states and resonances
reflect singularities in the analytically continued
perturbation expansion, in field theory the expansion
itself may be asymptotic.* This suggests that in field
theory there may be additional singularities such as
a branch point at the origin (g = 0).> The Padé,
however, may still be capable of summing the series.®
A more serious situation is the presence of an essential
singularity at the origin,” which makes it impossible
to construct the scattering amplitude from its per-
turbation expansion.

4 For recent work connected with the conjecture of F. J. Dyson,
Phys. Rev. 85, 631 (1952) and a list of related references see W. M.
Frank, J. Math. Phys. 5, 363 (1964).

® A. Peres, J. Math. Phys. 4, 332 (1963).

% G. A. Baker, Jr., and R. Chisholm, J. Math. Phys. 11, 1900
(1966).

7C. S. Lam, Nuovo Cimento 47A, 451 (1967); S50A, 504
(1967).
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Here we attack the potential problem, not by using
the integral equation®® for the scattering amplitude,
but through the radial Schrodinger equation and the
Jost function.

The analytic properties of the Jost function in the
potential strength g are particularly simple. For
potentials which are less singular than r—2 for small
r and which decrease faster than r—* for large r, the
Jost function is an entire function of g. For potentials
which satisfy

< oo,

f w[V(r)]’} dr

we show that the Jost function is an entire function
of order § and finite type. For potentials which decrease
exponentially or faster, we examine the distribution
of poles and zeros of the partial-wave S-matrix
element, and show that for energy E < 0, it is related
to a series of Stieltjes® in g. This property is of interest,
since it is a sufficient condition for the convergence of
the Padé method.?

For E > 0, it is convenient to deal with the zeros
and poles of tan §,. If the potential has no zeros for
0 < r < oo, we find that tan §, is related to a series
of Stieltjes.

In Sec. II, we review the basic notations. In Sec. III,
we examine the distribution of zeros of the Jost
function f;(k, g) for pure imaginary k(E < 0). Wedoa
similar analysis for the zeros and poles of tan d,(k, g)
for real k(E > 0) in Sec. 1V. In Sec. V, we establish
the order and type of f(k, g) as a function of g.

II. PRELIMINARIES

The radial Schrodinger equation is (units A2/2m = 1)

I(1+1)
2

2

d yl(k’ g, r) + |:k2 -

€ —gvuﬂym&gn)
dr

=0, (1

where the energy E = k% The regular solution
&,(k, g, r) is defined by the boundary condition (the
potential is assumed to be less singular than r=2 at the
origin),

()

The Jost solution f(k, g, r) satisfies the boundary
condition (the potential is assumed to fall off faster
than r71),

lim r 7 $,(K?, g, 7) = 1.
r—0

lim e*f(k, g, r) = 1.

r—®

8 S. Tani, Phys. Rev. 139, B 1011 (1965).

® Within the text we use a broader definition of the term ‘‘series
of Stieltjes” than is usual. The standard definition of a series of
Stieltjes (see Ref. 2) is essentially what we call an “ordinary” series
of Stieltjes.

€))
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The Jost function is defined by
ik g) = W,ifik,g, 0 dke, g r)], (@)
where
dp do
Wi, ) =oa— — f—.
P =oy =Py
The asymptotic form of ¢, for large r is then
¢l(k21 8 I‘) ~ [ﬁ(ka g)eikr - ﬁ(_k’ g)e_””]/ZIk (5)

The S-matrix element S,(k, g) = exp [2i,(k, g)] is
given in terms of the Jost function by

Sitk, &) = (—=Dfilk, g)[f(—k, &).

Two properties are immediate:

(6)

A. The Jost function is an entire function of g. This
follows from the fact that because the boundary
conditions (2) and (3) are independent of g, both
solutions f; and ¢, are entire functions of g (Poincaré’s
theorem).!

B. The Jost functions f,(k, g) and f,(—k, g) cannot
both vanish for the same value of k& % 0 and g.
This follows from the fact that if they did, ¢, [from
Eq. (5)] would vanish identically, contradicting Eq.
2).

We occasionally refer to functions which we call
an “ordinary” series of Stieltjes or an “extended”
series of Stieltjes. By this we mean the following. If
f(@) = fdp(u)(l —uz) has a power series ex-
pansion f(z) = 3 f,z*, and ¢(u) is a bounded mono-
tonic function taking on infinitely many values in the
interval of integration, we call f(z) an ordinary series
of Stieltjes if the interval is contained in half of the
real axis and an extended series of Stieltjes otherwise.

For example, if f(z) is a meromorphic function with
infinitely many real poles z, with residues R, having
all R, [z, of the same signand if f(z) = X R, (z — z,)™"
converges, then f(z) is an ordinary series of Stieltjes if
the z,, are either all positive or negative and an extended
series of Stieltjes if the z, are both positive and negative.

The series of Stieltjes property is important for the
application of the Padé approximant, where the
[V, M] Padé is defined to be a ratio of polynomials
Py, (2O, u(2)—Py 3 and Qy 5 have degree M
and N, respectively—having the same power series
expansion as f(z) up to and including the term
2N+ If f(2) is a series of Stieltjes, then the Padé
may be used to construct the function from its power
series expansion. For our present purposes, the
following theorem suffices.?

Theorem: If [f(z) — fo — fiz* - - —fiaz* )2 is a
series of Stieltjes with finite radius of convergence,
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then the lim N — oo [N, N 4 j + s] converges to f(z)
for j= —1,1,3, -, and z not a singular point of
the function. If f(z) is an ordinary series of Stieltjes,
one may also include j = 0, +2, +4, - -

III. BOUND STATES

We consider here imaginary k(E < 0) and first
restrict ourselves to positive semi-definite Yukawa
type potentials. That is to say V(r) > 0 and V(r) =
I era(a) dou, p > 0. A familiarity with the analytic
properties of the Jost function in the variable k will be
assumed. Since we deal only with fixed angular
momentum /, we will in what follows suppress the
angular momentum subscripts of Sec. 11.

In Sec. V, we show that f(k, g) is an entire function
of g of order } and type [°(V(r))! dr. Using these
results, we may thus write f(k,g) as an infinite
product:

fk, g)

= f(k, 0) JTT [ — g/g.(k)]. @)

where
[k, 0) = 27tT(/ + $)(2/ik)".

The S-matrix element from Eqs. (6) and (7) is then

Il —=
w1 — glg.(—k)
which we may rewrite, apart from subtractions, in a
Mittag-Leffler expansion

o RRg(=h)
Sthe) =2 -T2 gle.(—k)

The expression (9) is only a formal expansion and
does not converge. The convergence may be improved
by performing s subtractions so that Eq. (9) would
read as

Sty g) = 1+ Sik)g + -+ - S, 1 (K)g=t — g°
R (K)/gi+ (—k)
X2 T gl R

A sufficient condition for (10) to be a valid expansion
isll)

S(k, g) = (®)

€))

(10

for lim [S(k, g)lg™* =0

fg] =0
for all arg g # 0, where
limarg g, = 0.

We assume that Eq. (9) is valid apart from a finite
number of subtractions. That at least one subtraction

10 The proof is a standard application of Cauchys theorem. For
example, see A. [. Markuschevick, Theory of Functions of a Complex
Variable (Prentice-Hall, Inc., Englewood Cliffs, N.J. 1965), Vol.
11, Theorem 2.7.
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is necessary can be seen from the fact that for k& and
g real, § = exp (2i6) where ¢ is real. Also, for even
I, we show that R, (k)/g,(—k) is positive for k = iK,
K > 0 so that Eq. (9) would contradict the fact that
S(k, 0) = 1. If we ignore the problem of subtractions,
we are able to prove the following theorem.

Theorem: For —u%/4 < E <0, [S(k,g) — 1]/g is
an ordinary series of Stieltjes in g.

To prove the theorem, we show that for k = iK,
0 < K < p/2, the poles g,.(—k) are real and negative
and that the residues R, (k) are all positive or negative
depending on whether / is odd or even. The poles
g.(—k) are of course associated with the bound states
(when g = g,(—K), K > 0; the potential g¥(r) has
a bound state with energy E = —K?). We first
establish the following lemmas.

Lemma 1: g,(—k) is real for k =iK, K> 0.
Consider £k = iK, K > 0, and g = g, (—k). Writing
Eq. (1) for ¢ and ¢*, we have the identity

d

ar W ($, %) + [g.(—k) — gn(—RIV(r) |$I* = 0.

(11
From the asymptotic form (5) and the boundary
condition (2), we have, on integrating (11),

lea(—k) = £3(=)1 [ Ver) 1412 ar =
Since [ V(r)|$|*> # 0, we must have
gn(—k) — gn(—k) = 0.
Lemma 2: g,(—k) < 0 for k = iK, K > 0. In Eq.
(1) put y = ¢, k = iK, and g = g,(—k). Multiplying
by ¢ and integrating, one has the identity

&epﬂm&w=¢@

[ @ (e E)e]

If K > 0, one can take the limits 0 to co to get

g.(—k) = — L wdrl:(j—f)z + (K2 + 1(’—;1)) ﬂ /
A[,wV(r)dﬁ dr < 0. (12)
Lemma 3: dg_"(__lﬁ) <0 for K>0. In Eq. (1)

dK
put y= ¢, k=iK and g = g.(—iK). Denoting
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dp[—K?, g, (—iK), r]/dK by ¢', one has the identity
d

’ 2 dg.(—iK) 2 _
o W, ) + 2K¢$* + K V(rg® = 0.

Integrating from 0 to o for K > 0, one has

dg(—iK) _ _ ” ” 2
T 2KJ; qu.dr/J; V(r)¢®dr < 0. (13)

Lemma 4: f(—iK, g) has no multiple zeros for
K > 0. Suppose g,(—iK) and g,(—iK) were coin-
cident. Now ¢ and ¢ = d¢/dg satisfy the identity

d .
o W4, ¢) — V(r)¢* = 0. (14)
If one puts g = g,(—iK), K > 0 and integrates, this

becomes [y dr 2 = 0, which is a contradiction. The
point K = 0 can easily be included.

Lemma 5: g,(—iK) is an analytic function of K in
the neighborhood of K = 0. Now

is an analytic function of g and K in the neighborhood
of K =0 Since dh/dg # 0 at the point K =0,
g = g, it follows that g, (—iK) is analytic in the same
neighborhood (implicit function theorem, see Ref.
10, Theorem 3.11),

Lemma 6: The limit as K — 0 of K-#"1[g, (—iK) —
£2.(iK)] = (—=1)*)C,, where C, < 0. For / = O this is
just a restatement of Lemma 3 for K — 0. For general
I, we proceed as follows. Since from Lemma 5,
g.(—k) is analytic in the neighborhood of k =0,
we can consider the limit as k — 0 for k real. We
rewrite identity (11) for g = g.(—k) with k real
noting that g,(—k) is now complex, but since it is a
real analytic function of K in the neighborhood of
K =0, we have g¥(—k) = g,(k). Integrating (11)
we get

ik

lea(—h) = 001 [ V) 14 = 150k, ga(— b 2.
For small k we put g,(—k) — g,(k) = —Cik?+1,
Since
| flk, gu(—KDI? ~ ”En (1 — (£.(0)/gn(ONF

X CR2TY(] 4 Dkir+-2jgt (O)r,
we must have r = /and C, < 0.

We are now in a position to prove the main theorem
by considering the zeros and poles of S in the variable

POTENTIAL STRENGTH 2311

o
q
q

(a)

FiG. 1. The zeros 0 and poles
X of S in the g plane for E 0
and V(r) > 0 for: (a) / = 0,(b)
leven (I 7 0), and (c) /odd. The
solid black points are their E =0
positions.

®
Q
®

(b}

Py
A\=aan 4

[

[(4]

g. For k = 0 the zeros and poles coincide and S has
the value 1. For k = —iK, K small, real, and positive,
the poles g,(—iK) and zeros g,(iK) are distributed
(from Lemmas 1-6) as shown in Fig. 1.

For 0 < K < u/2 the zeros and poles of S must
remain distributed in this manner except for:

A. additional zeros which may appear in complex
pairs at infinity, move into the finite g plane and
possibly become real at some value of K,

B. additional real zeros on the positive real g axis
which may appear from + oo at certain values of K.

In either case one sees that near a pole g,(—iK),
S ~ R,(iK)/[g — g,(—iK)], where the residues R,(iK)
are negative for / even and positive for / odd.

From the discussion in Sec. I on series of Stieltjes
and if expansion (10) is valid with one subtraction,
we see that (§ — 1)/g is an ordinary series of Stieltjes.
If 5 subtractions are required, we see that (S — 1 —
Sig - — S,1g"™M/g" is an ordinary series of Stieltjes
for ¢t > s.

From the theorems on the Padé, one may then
conclude the following corollary.

Corollary: The [N, N 4 j + s] Padé approximant
converges to Sforlarge N,j > —1, —(u*4) < E < 0,
and g # g, (—iK).

One may note that the zeros of the type appearing
in A. and B. and the number of subtractions are
related. For example, if only one subtraction is
necessary, then by considering Eq. (10) for g complex,
we have Im$ = —Img > R,/lg — g,[> which can-
not vanish for Im g ## 0, and hence § has no complex
zeros. Also, for real g one would have

dS _ _ Ry/eh
dg (1 — g/g.)*
which is always positive for / even, and hence there

can be no zeros of type B. For / odd, dS/dg < 0 and
only one zero of type B. may occur.
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The case of one subtraction appears optimum for
the convergence of the Padé to the partial-wave
scattering amplitude T = (§ — 1)/2i. In this case
one has both T/g and g/T as ordinary series of
Stieltjes and the [N, N 4+ j] Padé converges to T for
j=0, %1, £2,---.

One may be curious as to what happens for
K > pj2. Since f(iK, g) is singular and infinite at
K=nu2,n=1,2,---, the behavior of the zeros
is complicated. If the singularity is a branch point, its
effect is to make the zeros of f(iK, g) singular. Since
the singularity is known to occur only in S;(k), one is
forced to write S in at least a twice subtracted form.
What happens is that as K — u/2 one of the zeros
approaches the origin while all the other zeros match
up with the poles. For u/2 < K < u, the g,(iK) are
generally complex. If the singularity in K is a simple
pole, as it is for the exponential or Hulthen potentials
for / = 0, then as K — /2, g,(iK) — 0 and g,(iK) —
Zu(—iK). For 4 > K > u/2 one has g,(iK) < 0 and
gna(—iK) < g,(iK) < g, o(—iK). The behavior at
the other singular points is similar.

In spite of this peculiar behavior at K = n p/2, the
residues R,(iK) cannot change sign and S is still
related to an ordinary series of Stieltjes except that
one is forced to write S in at least an #n 4 1 subtracted
form for (n 4+ 1) /2 < K < n u/2.

Let us now relax the condition on the positive
definiteness of the potential. It will again follow that
Sf(k, g) is an entire function of order §, although in a
derivation similar to that in Sec. V, one must take
into account turning points. For example, if ¥(r) had
a single zero at r = a and V(r) > 0 for r < a, one
could show that f(k,g) was an entire function of
order £ and type

[ v [fi-ver ]

Also, although f° V(r)$?dr is no longer positive
definite, Lemmas 1, 4, and 5 remain valid. This is
because of the identity [g = g,.(—k), k = iK, and
K 2 0],

g.(—iK) FV(;«) |12 dr

T [K“‘ + 1(’%21)] w) (15)

[

which tells us that g,(—iK) is real (hence also ¢) and
that §;° V(r)¢*dr # 0 and has the opposite sign to
g+(—iK). Although Lemmas 2 and 3 are not valid, they

dé
dr
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FiG. 2. The same as Fig. 1
but for V(r) with zeros.

©

may be combined to state that for K > 0

g.(—iK) dK 0 0

X [(j—f)z + (K2 + lglj—zl))&]. (16)

Also, Lemma 6 must be restated to say that C, has the
same sign as g,(—iK).

A similar analysis for the distribution of zeros and
poles of S results, except they now extend over the
whole real axis as in Fig. 2. As a result, we have
R,jg, >0 for [ even and <0 for / odd. Hence
(assuming only one subtraction), (S — 1 — g8,)/g?
and 1/(S—1)— (1/gS;) are extended series of
Stieltjes and the [N, N + j] Padé approximant for the
partial-wave scattering amplitude 7 converges to T
for large N, j= £1, £3, -+, and —pu?/4 < E<O.
If s subtractions are required, one may only assert
that for large N the [N, N +j+ s] Padé for §
converges to S for j= —1,1,3,-:-, and —u*4 <
E<O.

For potentials which decrease faster than an
exponential (for example potentials of finite range)
all that has been said remains valid if one replaces u
by + co.

IV. SCATTERING

In the previous section, we were able to establish,
by examining the zeros and poles of the partial-wave
S matrix, the convergence of the Padé method for
negative energies. For positive energies, the zeros
and poles of S are complex. Since our proof depended
on the series of Stieltjes property of S, it cannot be
applied here. One would suspect, however, that the
Padé approximant would also converge nicely for
E > 0. This optimism is due to the important fact
that the Padé approximant satisfies exact unitarity.?
For example, the [N, N] Padé approximant to S,
which we call Sy v, satisfies S¥% v = 1/Sy n. Also,
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the [N, M] Padé to T, Ty, satisfies Im Ty 5 =
ITN,IIllz for M S N.

A proof of the convergence of the Padé is possible
for positive energies if we restrict ourselves to positive
semi-definite potentials and consider instead the
zeros and poles of tan é.

Let us define F(k, g) = f(k, g)/f(k, 0) and put

H(k?, g) = (2ikg)~'[F(k, g) ~ F(—k, g)l,
G(k?, g) = §[F(k, g) + F(—k, g)].

Since F(k, g) is an entire function of g of order §, it
follows that H and G are also entire and of order
<1 We have seen in Sec. IIl, however, that for
k=1iK, 0 <K< puf2, the zeros of F(k,g) and
F(—k, g) intertwine. This implies that H and G have
at least one real zero between two real zeros of F
and hence they are precisely of order %.
From Egs. (6) and (17) we have

(kg)tan é (k, g) = H(k?, g)/G(k%, g). (18)
One may note that H and G are real analytic functions
of E = k®for |[Im k| < g/2. For E > 0, the zeros of
H(G) are the values of g where the phase shift d(k, g)

is an even (odd) multiple of 7/2. Denoting the zeros of
H and G by H,(k? and G, (k*) we may write

H(k®, g) = H(k*, O TT [1 — g/H,(k>)],
G(k23 g) = n [1 - g/Gn k?)]_
Because of the threshold behavior of the phase shift,
& ~ k¥ a(g) for small k, we have H{(k?, 0) ~ CE.
Also, from Egs. (7) and (17) we have G,(0) = g,(0).
We wish to examine the distribution of zeros and
poles of tan é and establish the following theorem.

a7

(19)

Theorem: If V{(r) has no zeros then, apart from
subtractions, (gk)™XE~'tan 0 is a series of Stieltjes in
gfor E> 0.

We will establish the theorem by showing that in the

formal expansion

-1 -1 — — rn(k2)/Gn(k2)

(kgy B tan 8(k, g) = 3 = RS, (20)

the residues r, and poles G, are real and that r,,/G, >

0. The assumption that ¥(r) has no zeros is crucial.

Without it we cannot even show that G,(E) and r,(E)
are real for real E > 0.

Proof: We first note that the zeros and poles of
tan & are real and simple for E > 0. This can be
shown in the same way as Lemmas 1 and 4 of Sec. 1.
For example, identity (11) for a general g is

;j—’; Wb, 4%) + (g — gOV(P) [ = 0.
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FiG. 3. The zeros 0 and
poles X of (ghky'E~! tan § to}
in the g plane for E > 0 and
Wr} 2> 0 for: (a) E~ 0 (b)
E®»O.

]
3
X
9

L]

For g equal to H, or G, and E > 0, the Wronskian
vanishes both at r = 0 and co. If ¥(r) > 0, one must
have H, and G, real. That these zeros are simple also
follows using a proof analogous to that used in
Lemma 4. In fact, writing identity (14) for a general g
with E > 0 gives us the stronger statement

da 2141
== 77(.’5) I‘—-ZU + %)(GZ + k2g2H2)—1

X ,‘ml/(r')(ﬁ2 dr. (21)

Hence dojdg < 0 and & is a monotonic function
of g. It then follows that the zeros and poles of
(kg)"E~! tan ¢ intertwine as in Fig. 3.

One should notice that for sufficiently small
energies, there are no zeros or poles for positive g.
As Eincreases new poles and zeros move in from + co.
This behavior is connected with the Wigner inequality!
on the phase shift. For example, if V(r) is of finite
range R, the I = 0 phase shift satisfies the inequality

dé 1. .

7 >~—R+ % sin (2kR + 20) (Ref. 11, Eq. 5.12),
independent of the magnitude of g. If we combine this
with the fact that for g > 0 and k = 0, déjdk > —R
[Ref. 11, Eq. (4.32)], we see that d(k,g) > —Rk.
Hence for k < w/2R the phase shift can never be as
negative as —/2, there would be no zeros or poles
for g > 0 and g~! tan é would be an ordinary series
of Stieltjes. For a general E, g~ tan é would be an
extended series of Stieltjes with a finite number of
zeros and poles for positive g. As E tends to oo there
are no restrictions on the number of zeros and poles
for g > 0, but because the Born approximation
becomes valid all zeros and poles tend to + co.

We may now conclude that if ¥{r) > 0 and no
subtractions are required in Eq. (20), the [N, N 4]
Pade converges to (kgy*E-'tan é for large N and
fixed j= 41, «43,---. For sufficiently small
energies, one can also include j = 0, £2,---.

11 R, G. Newton, J. Math. Phys. 1, 319 (1960).
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V. THE MAXIMUM MODULUS

We wish to examine the Jost function for fixed /
and k and large |g| in order to establish its order and
type as an entire function of g. The WKBJ or phase-
integral method is well suited for this purpose.l?
Although it is not necessary, we restrict ourselves to
potentials V(r) > 0. This simplifies the calculation
since there is no need to take into account turning
points.

The order and type of an entire function®® f(z)
classify the rate of growth of the function for large
Jz]. Let M(jz]) be the maximum value of | f(z)] on the
circle of radius |z|. The order p and type o of f(z) are
defined as

p = lim sup In In M(r) i
r- o Inr
¢ = lim sup r* In M(r).

Roughly speaking, if f(z) is of type p and order o it
has the same maximum rate of growth as the function
exp (oz*).

Let us now use the Schrodinger equation to find the
asymptotic form of the Jost function for large |g|.
In Eq. (1) we consider k2 = —K? with KX > 0 and
make the changes of variables r = e, y = 2w to
obtain
d*w
&;; - qz(x)w =0,

a(x) = [K%* + gV(@)e* + (14 DI (22)
For large positive values of g this has the approximate

solution
w= q‘%C exp(ifq dx).

For the regular solution ¢, Eq. (23) becomes in
terms of r

(23)

¢=cwuw*wgfmom, (24)

where

p(r) = [K*+ gV(r) + (I + D¥rilt (29)

and
c=u+awﬁu4%mn—w+%wnm.@®
If the asymptotic forom of Eq. (24) is compared with
Eq. (5), one obtains the Jost function
S(=iK, g) = 2a"HK( +
xwﬂfmn—w+am—xwr

+Lﬁmm—xuﬂ

12 3. Heading, An Introduction to Phase Integral Methods (Methuen
and Company, Ltd., London, 1962).

13 R, H. Boas, Jr., Entire Functions (Academic Press Inc., New
York, 1954).
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for g > 0 and K > 0. From Eq. (27) we have

lim In f(—iK, g) = g’}f wnttdr.  (28)
] J0
Since Eq. (28) is also valid for complex g with
—m < arg g < m, we conclude that the Jost function
has p =  and o = [ [V(r)}} dr.

VI. DISCUSSION

We have obtained the general features of the
partial-wave S-matrix element S(k, g) as a function
of the potential strength g for a large class of poten-
tials. Because S(k, g) is related to a series of Stieltjes
in g, we were able to prove the convergence of the
Padé method of summing the Born series. For
example, in the most optimistic case of one sub-
traction in Eq. (10) and no subtractions in Eq. (20),
the results for £ < 0 and E > 0 can be combined to
state that, for positive semi-definite Yukawa type
potentials, the [N, N] Padé converges to S(k, g) for
large N and —u?/4 < E. For finite N, the Padé
yields approximate expressions for S(k, g), which are
good outside the usual radius of convergence of the
perturbation expansion. These approximate expres-
sions have the additional features of satisfying exact
unitarity and supplying rigorous bounds® on S(k, g)
below threshold and tan § above threshold. Since
they are valid outside the radius of convergence they
may be used to obtain the bound states and resonances
from the Born series itself.

Numerically, the rate of convergence appears to be
quite rapid. For example, for the Yukawa potential
ge~"[r the s-wave scattering length is a, = —g +
(g%2) — g8 In %5 + g*1n3%%;. The [I, 1] Padé to a,
predicts an E = 0 bound state at g= —2, the
[2,2] Padé at g = —1.684. The exact value to 4
figures is g = —1.680. Also for positive g the Padé
supplies the bounds [N, N] > a, > [N, N 4+ 1]. For
the Hulthen potential®®* g(e” — 1)~ for g =1 (the
Born series is divergent), this gives tor N =1,
—1.29 > a, > —1.35. The convergence appears to
be less rapid at larger energies and/or larger angular
momentum.

The eventual hope of course is that the Padé
approximant may be successfully applied to the field
theory perturbation expansions of strong interactions.
Preliminary results on #wN and == scattering look
encouraging.'

14 §. Weinberg, J. Math. Phys. 5, 743 (1964).

15 3, J. Kubis, Bull. Am. Phys. Soc. 12, 472 (1967); M. A.
Newton (private communication); D. Bessis and M. Pusterla, Phys.
Letters 25B, 279 (1967); L. A. Copley and D. Masson, Phys. Rev.
(to be published).
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